Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Agieval

Task Version Metric Value StdErr
agieval_aqua_rat 0 acc 24.02 _ 2.69
agieval_aqua_rat 0 acc_norm 24.02 _ 2.69
agieval_logiqa_en 0 acc 23.20 _ 1.66
agieval_logiqa_en 0 acc_norm 24.42 _ 1.69
agieval_lsat_ar 0 acc 18.26 _ 2.55
agieval_lsat_ar 0 acc_norm 18.70 _ 2.58
agieval_lsat_lr 0 acc 22.35 _ 1.85
agieval_lsat_lr 0 acc_norm 23.53 _ 1.88
agieval_lsat_rc 0 acc 20.82 _ 2.48
agieval_lsat_rc 0 acc_norm 20.07 _ 2.45
agieval_sat_en 0 acc 32.52 _ 3.27
agieval_sat_en 0 acc_norm 32.52 _ 3.27
agieval_sat_en_without_passage 0 acc 25.73 _ 3.05
agieval_sat_en_without_passage 0 acc_norm 24.27 _ 2.99
agieval_sat_math 0 acc 25.00 _ 2.93
agieval_sat_math 0 acc_norm 20.91 _ 2.75
Average: 24.11

GPT4ALL

Task Version Metric Value StdErr
arc_challenge 0 acc 21.77 _ 1.21
arc_challenge 0 acc_norm 24.15 _ 1.25
arc_easy 0 acc 37.37 _ 0.99
arc_easy 0 acc_norm 36.95 _ 0.99
boolq 1 acc 65.60 _ 0.83
hellaswag 0 acc 34.54 _ 0.47
hellaswag 0 acc_norm 40.54 _ 0.49
openbookqa 0 acc 15.00 _ 1.59
openbookqa 0 acc_norm 27.40 _ 2.00
piqa 0 acc 60.88 _ 1.14
piqa 0 acc_norm 60.55 _ 1.14
winogrande 0 acc 50.91 _ 1.41
Average: 40.01

BigBench

Task Version Metric Value Std Err
bigbench_causal_judgement 0 MCG 50 2.26
bigbench_date_understanding 0 MCG 49.14 2.18
bigbench_disambiguation_qa 0 MCG 49.31 2.74
bigbench_geometric_shapes 0 MCG 14.18 1.37
bigbench_logical_deduction_5objs 0 MCG 49.41 2.73
bigbench_logical_deduction_7objs 0 MCG 41.48 2.46
bigbench_logical_deduction_3objs 0 MCG 69.33 2.75
bigbench_movie_recommendation 0 MCG 51.71 2.25
bigbench_navigate 0 MCG 50 1.58
bigbench_reasoning_colored_obj 0 MCG 51.92 0.99
bigbench_ruin_names 0 MCG 48.14 2.01
bigbench_salient_trans_err_detec 0 MCG 39.92 1.2
bigbench_snarks 0 MCG 64.14 3.71
bigbench_sports_understanding 0 MCG 55.31 1.59
bigbench_temporal_sequences 0 MCG 46.92 1.4
bigbench_tsk_shuff_objs_5 0 MCG 25.04 1.01
bigbench_tsk_shuff_objs_7 0 MCG 15.04 0.72
bigbench_tsk_shuff_objs_3 0 MCG 55.33 2.75
Average: 44.75

TruthfulQA

Task Version Metric Value Std Err
truthfulqa_mc 1 mc1 30.11 1.61
truthfulqa_mc 1 mc2 47.69 1.61
Average: 38.90

Openllm Benchmark

Task Version Metric Value Stderr
arc_challenge 0 acc 40.44 ± 1.43
acc_norm 43.81 ± 1.34
hellaswag 0 acc 48.1 ± 0.45
acc_norm 62.73 ± 0.32
gsm8k 0 acc 5.6 ± 0.6
winogrande 0 acc 60.91 ± 1.3
mmlu 0 acc 37.62 ± 0.6

Average: 73.5%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 29.00 ± 1.58
mc2 45.83 ± 1.59
Downloads last month
18
Safetensors
Model size
6.91B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support