distil-ner-context-v1
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
0.0004 | 1.0 | 1407 | 0.0002 | 0.9997 | 0.9997 | 0.9997 |
0.0002 | 2.0 | 2814 | 0.0001 | 1.0 | 0.9999 | 0.9999 |
0.0001 | 3.0 | 4221 | 0.0000 | 1.0 | 1.0 | 1.0 |
0.0001 | 4.0 | 5628 | 0.0000 | 1.0 | 1.0 | 1.0 |
0.0 | 5.0 | 7035 | 0.0000 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 3
Model tree for abishekcodes/distil-ner-context-v1
Base model
distilbert/distilbert-base-uncased