SentenceTransformer based on abkimc/distilroberta-base-sentence-transformer
This is a sentence-transformers model finetuned from abkimc/distilroberta-base-sentence-transformer. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: abkimc/distilroberta-base-sentence-transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("abkimc/distilroberta-base-sentence-transformer")
# Run inference
sentences = [
'The HTC Legend has made its official debut in India days after it was informally launched .',
'HTC Legend makes official debut in India',
'Britain, Bill Gates join forces',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.9061, -0.0382],
# [ 0.9061, 1.0000, -0.0170],
# [-0.0382, -0.0170, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 180,000 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 12 tokens
- mean: 33.68 tokens
- max: 293 tokens
- min: 5 tokens
- mean: 10.98 tokens
- max: 28 tokens
- Samples:
sentence_0 sentence_1 Content is the king in today's world of journalism and a newspaper cannot survive if it compromises on the quality of the content, said Abhilash Khandekar, Maharashtra state head of Dainik Bhaskar Group on Tuesday.
'Content is king in today's journalism'
Sammons Pensions has launched its ninth annual salary survey which aims to document remuneration packages across the industry.
Sammons launches ninth salary survey
The state of Tennessee saw a major spike in foreclosure filings in 2008, according to a report by the Tennessee Housing Development Agency.
Tennessee sees major spike in foreclosure filings in 2008
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robinrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1777 | 500 | 2.8662 |
0.3555 | 1000 | 0.0631 |
0.5332 | 1500 | 0.0149 |
0.7110 | 2000 | 0.0097 |
0.8887 | 2500 | 0.0079 |
1.0665 | 3000 | 0.0062 |
1.2442 | 3500 | 0.0041 |
1.4220 | 4000 | 0.0037 |
1.5997 | 4500 | 0.0038 |
1.7775 | 5000 | 0.0034 |
1.9552 | 5500 | 0.0038 |
2.1330 | 6000 | 0.0021 |
2.3107 | 6500 | 0.0015 |
2.4884 | 7000 | 0.0016 |
2.6662 | 7500 | 0.0015 |
2.8439 | 8000 | 0.0018 |
3.0217 | 8500 | 0.0015 |
3.1994 | 9000 | 0.0013 |
3.3772 | 9500 | 0.001 |
3.5549 | 10000 | 0.0011 |
3.7327 | 10500 | 0.0011 |
3.9104 | 11000 | 0.0014 |
4.0882 | 11500 | 0.0011 |
4.2659 | 12000 | 0.0007 |
4.4437 | 12500 | 0.0009 |
4.6214 | 13000 | 0.0009 |
4.7991 | 13500 | 0.0008 |
4.9769 | 14000 | 0.0008 |
5.1546 | 14500 | 0.0009 |
5.3324 | 15000 | 0.0007 |
5.5101 | 15500 | 0.0007 |
5.6879 | 16000 | 0.0007 |
5.8656 | 16500 | 0.0006 |
6.0434 | 17000 | 0.0007 |
6.2211 | 17500 | 0.0007 |
6.3989 | 18000 | 0.0005 |
6.5766 | 18500 | 0.0007 |
6.7544 | 19000 | 0.0005 |
6.9321 | 19500 | 0.0005 |
7.1098 | 20000 | 0.0005 |
7.2876 | 20500 | 0.0006 |
7.4653 | 21000 | 0.0005 |
7.6431 | 21500 | 0.0004 |
7.8208 | 22000 | 0.0004 |
7.9986 | 22500 | 0.0004 |
8.1763 | 23000 | 0.0004 |
8.3541 | 23500 | 0.0004 |
8.5318 | 24000 | 0.0005 |
8.7096 | 24500 | 0.0004 |
8.8873 | 25000 | 0.0004 |
9.0651 | 25500 | 0.0005 |
9.2428 | 26000 | 0.0004 |
9.4205 | 26500 | 0.0005 |
9.5983 | 27000 | 0.0004 |
9.7760 | 27500 | 0.0004 |
9.9538 | 28000 | 0.0004 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.4
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
Model tree for abkimc/distilroberta-base-sentence-transformer
Unable to build the model tree, the base model loops to the model itself. Learn more.