BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("adarshheg/bge-base-financial-matryoshka")
# Run inference
sentences = [
"During 2023, FedEx ranked 18th in FORTUNE magazine's 'World's Most Admired Companies' list and maintained its position as the highest-ranked delivery company on the list.",
'What recognition did FedEx receive from FORTUNE magazine in 2023?',
'What was the valuation allowance against deferred tax assets at the end of 2023, and what changes may affect its realization?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7767 |
cosine_accuracy@3 | 0.86 |
cosine_accuracy@5 | 0.89 |
cosine_accuracy@10 | 0.9333 |
cosine_precision@1 | 0.7767 |
cosine_precision@3 | 0.2867 |
cosine_precision@5 | 0.178 |
cosine_precision@10 | 0.0933 |
cosine_recall@1 | 0.7767 |
cosine_recall@3 | 0.86 |
cosine_recall@5 | 0.89 |
cosine_recall@10 | 0.9333 |
cosine_ndcg@10 | 0.852 |
cosine_mrr@10 | 0.8264 |
cosine_map@100 | 0.8286 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7567 |
cosine_accuracy@3 | 0.87 |
cosine_accuracy@5 | 0.8933 |
cosine_accuracy@10 | 0.9333 |
cosine_precision@1 | 0.7567 |
cosine_precision@3 | 0.29 |
cosine_precision@5 | 0.1787 |
cosine_precision@10 | 0.0933 |
cosine_recall@1 | 0.7567 |
cosine_recall@3 | 0.87 |
cosine_recall@5 | 0.8933 |
cosine_recall@10 | 0.9333 |
cosine_ndcg@10 | 0.8462 |
cosine_mrr@10 | 0.8183 |
cosine_map@100 | 0.8207 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.76 |
cosine_accuracy@3 | 0.86 |
cosine_accuracy@5 | 0.89 |
cosine_accuracy@10 | 0.9267 |
cosine_precision@1 | 0.76 |
cosine_precision@3 | 0.2867 |
cosine_precision@5 | 0.178 |
cosine_precision@10 | 0.0927 |
cosine_recall@1 | 0.76 |
cosine_recall@3 | 0.86 |
cosine_recall@5 | 0.89 |
cosine_recall@10 | 0.9267 |
cosine_ndcg@10 | 0.8433 |
cosine_mrr@10 | 0.8167 |
cosine_map@100 | 0.8191 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7067 |
cosine_accuracy@3 | 0.84 |
cosine_accuracy@5 | 0.8633 |
cosine_accuracy@10 | 0.91 |
cosine_precision@1 | 0.7067 |
cosine_precision@3 | 0.28 |
cosine_precision@5 | 0.1727 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.7067 |
cosine_recall@3 | 0.84 |
cosine_recall@5 | 0.8633 |
cosine_recall@10 | 0.91 |
cosine_ndcg@10 | 0.8099 |
cosine_mrr@10 | 0.7776 |
cosine_map@100 | 0.781 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6833 |
cosine_accuracy@3 | 0.7933 |
cosine_accuracy@5 | 0.8367 |
cosine_accuracy@10 | 0.88 |
cosine_precision@1 | 0.6833 |
cosine_precision@3 | 0.2644 |
cosine_precision@5 | 0.1673 |
cosine_precision@10 | 0.088 |
cosine_recall@1 | 0.6833 |
cosine_recall@3 | 0.7933 |
cosine_recall@5 | 0.8367 |
cosine_recall@10 | 0.88 |
cosine_ndcg@10 | 0.7796 |
cosine_mrr@10 | 0.7476 |
cosine_map@100 | 0.7519 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,500 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 6 tokens
- mean: 46.0 tokens
- max: 239 tokens
- min: 9 tokens
- mean: 20.82 tokens
- max: 42 tokens
- Samples:
positive anchor In the U.S., Visa Inc.'s total nominal payments volume increased by 17% from $4,725 billion in 2021 to $5,548 billion in 2022.
What is the total percentage increase in Visa Inc.'s nominal payments volume in the U.S. from 2021 to 2022?
The section titled 'Financial Wtatement and Supplementary Data' is labeled with the number 39 in the document.
What is the numerical label associated with the section on Financial Statements and Supplementary Data in the document?
The consolidated financial statements and accompanying notes are incorporated by reference herein.
Are the consolidated financial statements and accompanying notes incorporated by reference in the Annual Report on Form 10-K?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1tf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
---|---|---|---|---|---|---|
0.6809 | 2 | 0.7796 | 0.8153 | 0.8165 | 0.7375 | 0.8186 |
1.3617 | 4 | 0.781 | 0.8191 | 0.8207 | 0.7519 | 0.8286 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.33.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for adarshheg/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.777
- Cosine Accuracy@3 on dim 768self-reported0.860
- Cosine Accuracy@5 on dim 768self-reported0.890
- Cosine Accuracy@10 on dim 768self-reported0.933
- Cosine Precision@1 on dim 768self-reported0.777
- Cosine Precision@3 on dim 768self-reported0.287
- Cosine Precision@5 on dim 768self-reported0.178
- Cosine Precision@10 on dim 768self-reported0.093
- Cosine Recall@1 on dim 768self-reported0.777
- Cosine Recall@3 on dim 768self-reported0.860