SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v4")
# Run inference
sentences = [
    "La persona consumidora presenti la reclamació davant de l'entitat acreditada en un termini superior a un any des de la data en què va presentar la reclamació a l'empresa.",
    "Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?",
    "Quin és el resultat de la modificació substancial de la llicència d'obres en relació a les autoritzacions administratives?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.0574
cosine_accuracy@3 0.1791
cosine_accuracy@5 0.2539
cosine_accuracy@10 0.4243
cosine_precision@1 0.0574
cosine_precision@3 0.0597
cosine_precision@5 0.0508
cosine_precision@10 0.0424
cosine_recall@1 0.0574
cosine_recall@3 0.1791
cosine_recall@5 0.2539
cosine_recall@10 0.4243
cosine_ndcg@10 0.2113
cosine_mrr@10 0.1472
cosine_map@100 0.1688

Information Retrieval

Metric Value
cosine_accuracy@1 0.0591
cosine_accuracy@3 0.167
cosine_accuracy@5 0.2417
cosine_accuracy@10 0.4174
cosine_precision@1 0.0591
cosine_precision@3 0.0557
cosine_precision@5 0.0483
cosine_precision@10 0.0417
cosine_recall@1 0.0591
cosine_recall@3 0.167
cosine_recall@5 0.2417
cosine_recall@10 0.4174
cosine_ndcg@10 0.2074
cosine_mrr@10 0.1442
cosine_map@100 0.1663

Information Retrieval

Metric Value
cosine_accuracy@1 0.0643
cosine_accuracy@3 0.1617
cosine_accuracy@5 0.2417
cosine_accuracy@10 0.4052
cosine_precision@1 0.0643
cosine_precision@3 0.0539
cosine_precision@5 0.0483
cosine_precision@10 0.0405
cosine_recall@1 0.0643
cosine_recall@3 0.1617
cosine_recall@5 0.2417
cosine_recall@10 0.4052
cosine_ndcg@10 0.2063
cosine_mrr@10 0.1464
cosine_map@100 0.17

Information Retrieval

Metric Value
cosine_accuracy@1 0.0557
cosine_accuracy@3 0.1565
cosine_accuracy@5 0.2278
cosine_accuracy@10 0.3913
cosine_precision@1 0.0557
cosine_precision@3 0.0522
cosine_precision@5 0.0456
cosine_precision@10 0.0391
cosine_recall@1 0.0557
cosine_recall@3 0.1565
cosine_recall@5 0.2278
cosine_recall@10 0.3913
cosine_ndcg@10 0.1965
cosine_mrr@10 0.1377
cosine_map@100 0.1621

Information Retrieval

Metric Value
cosine_accuracy@1 0.0678
cosine_accuracy@3 0.1704
cosine_accuracy@5 0.2574
cosine_accuracy@10 0.4174
cosine_precision@1 0.0678
cosine_precision@3 0.0568
cosine_precision@5 0.0515
cosine_precision@10 0.0417
cosine_recall@1 0.0678
cosine_recall@3 0.1704
cosine_recall@5 0.2574
cosine_recall@10 0.4174
cosine_ndcg@10 0.2142
cosine_mrr@10 0.1528
cosine_map@100 0.1754

Information Retrieval

Metric Value
cosine_accuracy@1 0.0522
cosine_accuracy@3 0.1461
cosine_accuracy@5 0.233
cosine_accuracy@10 0.4035
cosine_precision@1 0.0522
cosine_precision@3 0.0487
cosine_precision@5 0.0466
cosine_precision@10 0.0403
cosine_recall@1 0.0522
cosine_recall@3 0.1461
cosine_recall@5 0.233
cosine_recall@10 0.4035
cosine_ndcg@10 0.1961
cosine_mrr@10 0.1339
cosine_map@100 0.1564

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,175 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 5 tokens
    • mean: 43.23 tokens
    • max: 117 tokens
    • min: 10 tokens
    • mean: 20.25 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    Aquest tràmit us permet consultar informació de les anotacions d'entrada i sortida que hi consten al registre de l'Ajuntament de Sant Quirze del Vallès. Quin és el format de les dades de sortida del tràmit?
    Tràmit a través del qual la persona interessada posa en coneixement de l’Ajuntament la voluntat de: ... Renunciar a una llicència prèviament atorgada. Quin és el resultat de la renúncia a una llicència urbanística prèviament atorgada?
    D’acord amb el plànol d'ubicació de parades: Mercat de diumenges a Les Fonts Quin és el plànol d'ubicació de parades del mercat de diumenges a Les Fonts?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4938 10 3.936 - - - - - -
0.9877 20 2.7857 0.1550 0.1522 0.1557 0.1507 0.1344 0.1503
1.4815 30 1.4901 - - - - - -
1.9753 40 1.3464 0.1580 0.1654 0.1695 0.1580 0.1510 0.1624
2.4691 50 0.7755 - - - - - -
2.9630 60 0.8553 0.1608 0.1705 0.1647 0.1661 0.1564 0.1689
3.4568 70 0.5817 - - - - - -
3.9506 80 0.6587 - - - - - -
4.0 81 - 0.1672 0.1657 0.1620 0.1689 0.1556 0.1669
4.4444 90 0.4847 - - - - - -
4.9383 100 0.6024 0.1688 0.1754 0.1621 0.17 0.1564 0.1663
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for adriansanz/ST-tramits-SQV-004-5ep

Base model

BAAI/bge-m3
Finetuned
(197)
this model

Evaluation results