File size: 31,939 Bytes
cde74aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5175
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Caldrà executar l'obra comunicada prèviament d'acord amb les condicions
    específiques que es contenen en el model normalitzat CT02.
  sentences:
  - Quin és el propòsit de la instal·lació d'un circ sense animals a la via pública?
  - Quin és el destinatari de les dades bloquejades?
  - Quin és el format de presentació de la comunicació prèvia?
- source_sentence: Armes utilitzables en activitats lúdico-esportives d’airsoft i
    paintball...
  sentences:
  - Quin és el paper de l'AFA en la venda de llibres?
  - Quin és el benefici de tenir dades personals correctes?
  - Quin és el tipus d'activitats que es poden practicar amb les armes de 4a categoria?
- source_sentence: En les activitats sotmeses al règim d’autorització ambiental o
    llicència municipal d’activitat (Annex I o Annex II de la Llei 20/2009) cal demanar
    aquest certificat previ a la presentació de la sol·licitud d’autorització ambiental
    o llicència municipal.
  sentences:
  - Quin és el benefici de tenir el certificat de compatibilitat urbanística en les
    activitats sotmeses a llicència municipal d’activitat?
  - Com puc controlar la recepció de propaganda electoral per correu?
  - Quin és el benefici de la cessió d'un compostador domèstic per a l'entorn?
- source_sentence: La persona interessada posa en coneixement de l’Administració,
    les actuacions urbanístiques que pretén dur a terme consistents en l'apuntalament
    o reforç provisional d'estructures existents fins a la intervenció definitiva.
  sentences:
  - Qui pot participar en el Consell d'Adolescents?
  - Quin és el resultat de la presentació de la comunicació prèvia?
  - Quin és el paper de la persona interessada en relació amb la presentació de la
    comunicació prèvia?
- source_sentence: La persona consumidora presenti la reclamació davant de l'entitat
    acreditada en un termini superior a un any des de la data en què va presentar
    la reclamació a l'empresa.
  sentences:
  - Quin és el tràmit per inscriure'm al Padró d'Habitants sense tenir constància
    de la meva anterior residència?
  - Quin és el resultat de la modificació substancial de la llicència d'obres en relació
    a les autoritzacions administratives?
  - Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.057391304347826085
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1791304347826087
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2539130434782609
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.42434782608695654
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.057391304347826085
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05971014492753622
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05078260869565218
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.042434782608695654
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.057391304347826085
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1791304347826087
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2539130434782609
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.42434782608695654
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.21132731792814036
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1471621808143548
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.16876601661954835
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.059130434782608696
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.16695652173913045
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2417391304347826
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.41739130434782606
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.059130434782608696
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05565217391304348
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04834782608695652
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04173913043478261
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.059130434782608696
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.16695652173913045
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2417391304347826
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.41739130434782606
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2073596053307957
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.14417184265010352
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.16633232312496227
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.06434782608695652
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1617391304347826
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2417391304347826
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4052173913043478
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.06434782608695652
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05391304347826086
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04834782608695652
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04052173913043479
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.06434782608695652
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1617391304347826
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2417391304347826
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4052173913043478
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.20633605278226078
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1464064872325742
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.16999201443118514
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.05565217391304348
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.1565217391304348
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.22782608695652173
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.391304347826087
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05565217391304348
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05217391304347826
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.045565217391304355
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0391304347826087
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05565217391304348
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.1565217391304348
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.22782608695652173
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.391304347826087
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19646870519287135
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.13765838509316777
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.16205285151749863
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.06782608695652174
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.17043478260869566
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2573913043478261
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.41739130434782606
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.06782608695652174
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.05681159420289853
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05147826086956522
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04173913043478261
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.06782608695652174
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.17043478260869566
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2573913043478261
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.41739130434782606
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2141738525949419
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.15279848171152532
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.17543729180964374
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.05217391304347826
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.14608695652173914
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.23304347826086957
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.40347826086956523
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.05217391304347826
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.04869565217391304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.04660869565217392
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04034782608695652
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.05217391304347826
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.14608695652173914
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.23304347826086957
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.40347826086956523
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.19611597970227643
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.133929606625259
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.15637789403585464
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/sqv-v4")
# Run inference
sentences = [
    "La persona consumidora presenti la reclamació davant de l'entitat acreditada en un termini superior a un any des de la data en què va presentar la reclamació a l'empresa.",
    "Quin és el paper de l'entitat acreditada en la tramitació d'una reclamació?",
    "Quin és el resultat de la modificació substancial de la llicència d'obres en relació a les autoritzacions administratives?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0574     |
| cosine_accuracy@3   | 0.1791     |
| cosine_accuracy@5   | 0.2539     |
| cosine_accuracy@10  | 0.4243     |
| cosine_precision@1  | 0.0574     |
| cosine_precision@3  | 0.0597     |
| cosine_precision@5  | 0.0508     |
| cosine_precision@10 | 0.0424     |
| cosine_recall@1     | 0.0574     |
| cosine_recall@3     | 0.1791     |
| cosine_recall@5     | 0.2539     |
| cosine_recall@10    | 0.4243     |
| cosine_ndcg@10      | 0.2113     |
| cosine_mrr@10       | 0.1472     |
| **cosine_map@100**  | **0.1688** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0591     |
| cosine_accuracy@3   | 0.167      |
| cosine_accuracy@5   | 0.2417     |
| cosine_accuracy@10  | 0.4174     |
| cosine_precision@1  | 0.0591     |
| cosine_precision@3  | 0.0557     |
| cosine_precision@5  | 0.0483     |
| cosine_precision@10 | 0.0417     |
| cosine_recall@1     | 0.0591     |
| cosine_recall@3     | 0.167      |
| cosine_recall@5     | 0.2417     |
| cosine_recall@10    | 0.4174     |
| cosine_ndcg@10      | 0.2074     |
| cosine_mrr@10       | 0.1442     |
| **cosine_map@100**  | **0.1663** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value    |
|:--------------------|:---------|
| cosine_accuracy@1   | 0.0643   |
| cosine_accuracy@3   | 0.1617   |
| cosine_accuracy@5   | 0.2417   |
| cosine_accuracy@10  | 0.4052   |
| cosine_precision@1  | 0.0643   |
| cosine_precision@3  | 0.0539   |
| cosine_precision@5  | 0.0483   |
| cosine_precision@10 | 0.0405   |
| cosine_recall@1     | 0.0643   |
| cosine_recall@3     | 0.1617   |
| cosine_recall@5     | 0.2417   |
| cosine_recall@10    | 0.4052   |
| cosine_ndcg@10      | 0.2063   |
| cosine_mrr@10       | 0.1464   |
| **cosine_map@100**  | **0.17** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0557     |
| cosine_accuracy@3   | 0.1565     |
| cosine_accuracy@5   | 0.2278     |
| cosine_accuracy@10  | 0.3913     |
| cosine_precision@1  | 0.0557     |
| cosine_precision@3  | 0.0522     |
| cosine_precision@5  | 0.0456     |
| cosine_precision@10 | 0.0391     |
| cosine_recall@1     | 0.0557     |
| cosine_recall@3     | 0.1565     |
| cosine_recall@5     | 0.2278     |
| cosine_recall@10    | 0.3913     |
| cosine_ndcg@10      | 0.1965     |
| cosine_mrr@10       | 0.1377     |
| **cosine_map@100**  | **0.1621** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0678     |
| cosine_accuracy@3   | 0.1704     |
| cosine_accuracy@5   | 0.2574     |
| cosine_accuracy@10  | 0.4174     |
| cosine_precision@1  | 0.0678     |
| cosine_precision@3  | 0.0568     |
| cosine_precision@5  | 0.0515     |
| cosine_precision@10 | 0.0417     |
| cosine_recall@1     | 0.0678     |
| cosine_recall@3     | 0.1704     |
| cosine_recall@5     | 0.2574     |
| cosine_recall@10    | 0.4174     |
| cosine_ndcg@10      | 0.2142     |
| cosine_mrr@10       | 0.1528     |
| **cosine_map@100**  | **0.1754** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0522     |
| cosine_accuracy@3   | 0.1461     |
| cosine_accuracy@5   | 0.233      |
| cosine_accuracy@10  | 0.4035     |
| cosine_precision@1  | 0.0522     |
| cosine_precision@3  | 0.0487     |
| cosine_precision@5  | 0.0466     |
| cosine_precision@10 | 0.0403     |
| cosine_recall@1     | 0.0522     |
| cosine_recall@3     | 0.1461     |
| cosine_recall@5     | 0.233      |
| cosine_recall@10    | 0.4035     |
| cosine_ndcg@10      | 0.1961     |
| cosine_mrr@10       | 0.1339     |
| **cosine_map@100**  | **0.1564** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 5,175 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 43.23 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.25 tokens</li><li>max: 46 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                              | anchor                                                                                           |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|
  | <code>Aquest tràmit us permet consultar informació de les anotacions d'entrada i sortida que hi consten al registre de l'Ajuntament de Sant Quirze del Vallès.</code> | <code>Quin és el format de les dades de sortida del tràmit?</code>                               |
  | <code>Tràmit a través del qual la persona interessada posa en coneixement de l’Ajuntament la voluntat de: ... Renunciar a una llicència prèviament atorgada.</code>   | <code>Quin és el resultat de la renúncia a una llicència urbanística prèviament atorgada?</code> |
  | <code>D’acord amb el plànol d'ubicació de parades: Mercat de diumenges a Les Fonts</code>                                                                             | <code>Quin és el plànol d'ubicació de parades del mercat de diumenges a Les Fonts?</code>        |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.4938     | 10      | 3.936         | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.9877     | 20      | 2.7857        | 0.1550                  | 0.1522                 | 0.1557                 | 0.1507                 | 0.1344                | 0.1503                 |
| 1.4815     | 30      | 1.4901        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.9753     | 40      | 1.3464        | 0.1580                  | 0.1654                 | 0.1695                 | 0.1580                 | 0.1510                | 0.1624                 |
| 2.4691     | 50      | 0.7755        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.9630     | 60      | 0.8553        | 0.1608                  | 0.1705                 | 0.1647                 | 0.1661                 | 0.1564                | 0.1689                 |
| 3.4568     | 70      | 0.5817        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.9506     | 80      | 0.6587        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.0        | 81      | -             | 0.1672                  | 0.1657                 | 0.1620                 | 0.1689                 | 0.1556                | 0.1669                 |
| 4.4444     | 90      | 0.4847        | -                       | -                      | -                      | -                      | -                     | -                      |
| **4.9383** | **100** | **0.6024**    | **0.1688**              | **0.1754**             | **0.1621**             | **0.17**               | **0.1564**            | **0.1663**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->