SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-sitges-003-10ep")
# Run inference
sentences = [
    "Els comerços locals obtenen un benefici principal de la implementació del projecte d'implantació i ús de la targeta de fidelització del comerç local de Sitges, que és la possibilitat d'augmentar les vendes i la fidelització dels clients.",
    "Quin és el benefici que els comerços locals obtenen de la implementació del projecte d'implantació i ús de la targeta de fidelització?",
    'Quin és el propòsit de la deixalleria municipal per a l’ambient?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1331
cosine_accuracy@3 0.2624
cosine_accuracy@5 0.3536
cosine_accuracy@10 0.5243
cosine_precision@1 0.1331
cosine_precision@3 0.0875
cosine_precision@5 0.0707
cosine_precision@10 0.0524
cosine_recall@1 0.1331
cosine_recall@3 0.2624
cosine_recall@5 0.3536
cosine_recall@10 0.5243
cosine_ndcg@10 0.2986
cosine_mrr@10 0.2301
cosine_map@100 0.2513

Information Retrieval

Metric Value
cosine_accuracy@1 0.1322
cosine_accuracy@3 0.263
cosine_accuracy@5 0.3541
cosine_accuracy@10 0.5286
cosine_precision@1 0.1322
cosine_precision@3 0.0877
cosine_precision@5 0.0708
cosine_precision@10 0.0529
cosine_recall@1 0.1322
cosine_recall@3 0.263
cosine_recall@5 0.3541
cosine_recall@10 0.5286
cosine_ndcg@10 0.3011
cosine_mrr@10 0.2322
cosine_map@100 0.253

Information Retrieval

Metric Value
cosine_accuracy@1 0.1342
cosine_accuracy@3 0.2655
cosine_accuracy@5 0.3589
cosine_accuracy@10 0.5257
cosine_precision@1 0.1342
cosine_precision@3 0.0885
cosine_precision@5 0.0718
cosine_precision@10 0.0526
cosine_recall@1 0.1342
cosine_recall@3 0.2655
cosine_recall@5 0.3589
cosine_recall@10 0.5257
cosine_ndcg@10 0.3011
cosine_mrr@10 0.2329
cosine_map@100 0.2538

Information Retrieval

Metric Value
cosine_accuracy@1 0.1266
cosine_accuracy@3 0.2633
cosine_accuracy@5 0.3564
cosine_accuracy@10 0.5229
cosine_precision@1 0.1266
cosine_precision@3 0.0878
cosine_precision@5 0.0713
cosine_precision@10 0.0523
cosine_recall@1 0.1266
cosine_recall@3 0.2633
cosine_recall@5 0.3564
cosine_recall@10 0.5229
cosine_ndcg@10 0.2972
cosine_mrr@10 0.2285
cosine_map@100 0.2496

Information Retrieval

Metric Value
cosine_accuracy@1 0.1274
cosine_accuracy@3 0.2684
cosine_accuracy@5 0.3553
cosine_accuracy@10 0.521
cosine_precision@1 0.1274
cosine_precision@3 0.0895
cosine_precision@5 0.0711
cosine_precision@10 0.0521
cosine_recall@1 0.1274
cosine_recall@3 0.2684
cosine_recall@5 0.3553
cosine_recall@10 0.521
cosine_ndcg@10 0.2973
cosine_mrr@10 0.2293
cosine_map@100 0.2507

Information Retrieval

Metric Value
cosine_accuracy@1 0.1224
cosine_accuracy@3 0.2546
cosine_accuracy@5 0.344
cosine_accuracy@10 0.5165
cosine_precision@1 0.1224
cosine_precision@3 0.0849
cosine_precision@5 0.0688
cosine_precision@10 0.0516
cosine_recall@1 0.1224
cosine_recall@3 0.2546
cosine_recall@5 0.344
cosine_recall@10 0.5165
cosine_ndcg@10 0.2909
cosine_mrr@10 0.2225
cosine_map@100 0.2429

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,399 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 9 tokens
    • mean: 49.44 tokens
    • max: 178 tokens
    • min: 9 tokens
    • mean: 21.17 tokens
    • max: 48 tokens
  • Samples:
    positive anchor
    L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges. Quin és el benefici de les subvencions per a les entitats esportives?
    L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases. Quin és el període d'execució dels projectes i activitats esportives?
    Certificat on s'indica el nombre d'habitatges que configuren el padró de l'Impost sobre Béns Immobles del municipi o bé d'una part d'aquest. Quin és el contingut del certificat del nombre d'habitatges?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4 10 3.5464 - - - - - -
0.8 20 2.3861 - - - - - -
1.0 25 - 0.2327 0.2144 0.2252 0.2286 0.1938 0.2329
1.1975 30 1.8712 - - - - - -
1.5975 40 1.3322 - - - - - -
1.9975 50 0.9412 0.2410 0.2310 0.2383 0.2415 0.2236 0.2436
2.395 60 0.806 - - - - - -
2.795 70 0.5024 - - - - - -
2.995 75 - 0.2451 0.2384 0.2455 0.2487 0.2323 0.2423
3.1925 80 0.4259 - - - - - -
3.5925 90 0.3556 - - - - - -
3.9925 100 0.2555 0.2477 0.2443 0.2417 0.2485 0.2369 0.2470
4.39 110 0.2611 - - - - - -
4.79 120 0.1939 - - - - - -
4.99 125 - 0.2490 0.2425 0.2479 0.2485 0.2386 0.2495
5.1875 130 0.2021 - - - - - -
5.5875 140 0.1537 - - - - - -
5.9875 150 0.1277 0.2535 0.2491 0.2491 0.2534 0.2403 0.2541
6.385 160 0.1213 - - - - - -
6.785 170 0.1035 - - - - - -
6.985 175 - 0.2513 0.2493 0.2435 0.2515 0.2380 0.2528
7.1825 180 0.0965 - - - - - -
7.5825 190 0.0861 - - - - - -
7.9825 200 0.0794 0.2529 0.2536 0.2526 0.2545 0.2438 0.2570
8.38 210 0.0734 - - - - - -
8.78 220 0.066 - - - - - -
8.98 225 - 0.2538 0.2523 0.2519 0.2542 0.2457 0.2572
9.1775 230 0.0731 - - - - - -
9.5775 240 0.0726 - - - - - -
9.9775 250 0.0632 0.2513 0.2507 0.2496 0.2538 0.2429 0.2530
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for adriansanz/ST-tramits-sitges-003-10ep

Base model

BAAI/bge-m3
Finetuned
(197)
this model

Evaluation results