File size: 35,160 Bytes
245c7af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
---
base_model: BAAI/bge-m3
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:8769
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Aquelles persones que fan un ús regular i continuat de la deixalleria
    municipal poden gaudir d’una bonificació del 20% sobre la quota de les taxes per
    recollida, tractament i eliminació d'escombraries i altres residus urbans domiciliaris.
  sentences:
  - Quin és el contingut dels documents dirigits a l'Ajuntament de Sitges?
  - Quin és el benefici de la deixalleria municipal?
  - Quin és el mètode de pagament dels ajuts atorgats en cas de normalitat?
- source_sentence: Les subvencions per al desenvolupament i/o consolidació de sectors
    econòmics del municipi tenen com a objectiu generar un benefici ambiental per
    al municipi, a través de la promoció de pràctiques sostenibles.
  sentences:
  - Quin és el requisit per a la llicència per a la modificació d'un règim de propietat
    horitzontal?
  - Quin és el benefici ambiental esperat de les subvencions per al desenvolupament
    i/o consolidació de sectors econòmics del municipi?
  - Quin és el propòsit de la liquidació de l'import corresponent a l'exercici?
- source_sentence: Aquelles persones que s'hagin inscrit a les estades esportives
    organitzades per l'Ajuntament de Sitges i que formin part d'una unitat familiar
    amb uns ingressos bruts mensuals, que una vegada dividits pel nombre de membres,
    siguin inferiors entre una i dues terceres parts de l'IPREM, poden sol·licitar
    una reducció de la quota d'aquestes activitats o l'aplicació de la corresponent
    tarifa bonificada establerta en les ordenances dels preus públics.
  sentences:
  - Quin és el benefici de les subvencions per a les entitats culturals?
  - Quin és el paper de l'IPREM en la sol·licitud de reducció de la quota d'una estada
    esportiva?
  - Quin és el paper de l'Ajuntament en la resolució d'una situació sanitària no adequada
    en un domini particular?
- source_sentence: La inscripció al cens municipal facilita la recuperació d’aquests
    animals en cas de pèrdua alhora que permet a l’Ajuntament disposar de les dades
    necessàries en cas que s’hagin de realitzar campanyes sanitàries.
  sentences:
  - Quin és el tipus de serveis auxiliars que es consideren despeses elegibles?
  - Quin és el benefici d'estacionar a les zones verdes per als residents?
  - Quin és el motiu pel qual es crea el cens municipal d’animals de companyia?
- source_sentence: A la nostra vila hi ha veïns i veïnes que els agradaria tornar
    a fer de pagès o provar-ho per primera vegada.
  sentences:
  - Quin és l'objectiu principal de l'activitat del Viver dels Avis de Sitges?
  - Quin és el propòsit del carnet de conductor de taxi?
  - Quin és el paper de les persones en relació amb les indemnitzacions?
model-index:
- name: SentenceTransformer based on BAAI/bge-m3
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.11054852320675106
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2270042194092827
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.30548523206751055
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4531645569620253
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.11054852320675106
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07566807313642755
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06109704641350212
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04531645569620253
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11054852320675106
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2270042194092827
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.30548523206751055
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4531645569620253
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25622764604771076
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1965350612818966
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21859411055862238
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.11561181434599156
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2320675105485232
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.31139240506329113
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.44556962025316454
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.11561181434599156
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07735583684950773
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.06227848101265824
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.044556962025316456
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.11561181434599156
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2320675105485232
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.31139240506329113
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.44556962025316454
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2579660315889156
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.20086732301922164
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.22344331787470567
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.10379746835443038
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2210970464135021
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2970464135021097
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.43966244725738396
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10379746835443038
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07369901547116735
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05940928270042194
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.043966244725738395
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10379746835443038
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2210970464135021
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2970464135021097
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.43966244725738396
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2473619714740055
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.18892840399169497
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21182552044674802
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.10042194092827005
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.21518987341772153
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2978902953586498
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4438818565400844
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10042194092827005
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07172995780590716
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05957805907172995
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04438818565400844
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10042194092827005
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.21518987341772153
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2978902953586498
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4438818565400844
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.2479637375723138
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.18831156653941447
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.21130848497160895
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.10886075949367088
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.22616033755274262
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.3029535864978903
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4413502109704641
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.10886075949367088
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.07538677918424753
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.060590717299578066
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04413502109704641
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.10886075949367088
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.22616033755274262
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.3029535864978903
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4413502109704641
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.25366131313332974
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.19639441430580665
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2187767008895725
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.09367088607594937
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.2
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.2742616033755274
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.4177215189873418
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.09367088607594937
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.06666666666666667
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.05485232067510549
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.04177215189873418
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.09367088607594937
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.2
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.2742616033755274
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.4177215189873418
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.23046340016141767
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.1738279418659165
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.19782551958501599
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-m3

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-sitges-003-5ep")
# Run inference
sentences = [
    'A la nostra vila hi ha veïns i veïnes que els agradaria tornar a fer de pagès o provar-ho per primera vegada.',
    "Quin és l'objectiu principal de l'activitat del Viver dels Avis de Sitges?",
    'Quin és el paper de les persones en relació amb les indemnitzacions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1105     |
| cosine_accuracy@3   | 0.227      |
| cosine_accuracy@5   | 0.3055     |
| cosine_accuracy@10  | 0.4532     |
| cosine_precision@1  | 0.1105     |
| cosine_precision@3  | 0.0757     |
| cosine_precision@5  | 0.0611     |
| cosine_precision@10 | 0.0453     |
| cosine_recall@1     | 0.1105     |
| cosine_recall@3     | 0.227      |
| cosine_recall@5     | 0.3055     |
| cosine_recall@10    | 0.4532     |
| cosine_ndcg@10      | 0.2562     |
| cosine_mrr@10       | 0.1965     |
| **cosine_map@100**  | **0.2186** |

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1156     |
| cosine_accuracy@3   | 0.2321     |
| cosine_accuracy@5   | 0.3114     |
| cosine_accuracy@10  | 0.4456     |
| cosine_precision@1  | 0.1156     |
| cosine_precision@3  | 0.0774     |
| cosine_precision@5  | 0.0623     |
| cosine_precision@10 | 0.0446     |
| cosine_recall@1     | 0.1156     |
| cosine_recall@3     | 0.2321     |
| cosine_recall@5     | 0.3114     |
| cosine_recall@10    | 0.4456     |
| cosine_ndcg@10      | 0.258      |
| cosine_mrr@10       | 0.2009     |
| **cosine_map@100**  | **0.2234** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1038     |
| cosine_accuracy@3   | 0.2211     |
| cosine_accuracy@5   | 0.297      |
| cosine_accuracy@10  | 0.4397     |
| cosine_precision@1  | 0.1038     |
| cosine_precision@3  | 0.0737     |
| cosine_precision@5  | 0.0594     |
| cosine_precision@10 | 0.044      |
| cosine_recall@1     | 0.1038     |
| cosine_recall@3     | 0.2211     |
| cosine_recall@5     | 0.297      |
| cosine_recall@10    | 0.4397     |
| cosine_ndcg@10      | 0.2474     |
| cosine_mrr@10       | 0.1889     |
| **cosine_map@100**  | **0.2118** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1004     |
| cosine_accuracy@3   | 0.2152     |
| cosine_accuracy@5   | 0.2979     |
| cosine_accuracy@10  | 0.4439     |
| cosine_precision@1  | 0.1004     |
| cosine_precision@3  | 0.0717     |
| cosine_precision@5  | 0.0596     |
| cosine_precision@10 | 0.0444     |
| cosine_recall@1     | 0.1004     |
| cosine_recall@3     | 0.2152     |
| cosine_recall@5     | 0.2979     |
| cosine_recall@10    | 0.4439     |
| cosine_ndcg@10      | 0.248      |
| cosine_mrr@10       | 0.1883     |
| **cosine_map@100**  | **0.2113** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.1089     |
| cosine_accuracy@3   | 0.2262     |
| cosine_accuracy@5   | 0.303      |
| cosine_accuracy@10  | 0.4414     |
| cosine_precision@1  | 0.1089     |
| cosine_precision@3  | 0.0754     |
| cosine_precision@5  | 0.0606     |
| cosine_precision@10 | 0.0441     |
| cosine_recall@1     | 0.1089     |
| cosine_recall@3     | 0.2262     |
| cosine_recall@5     | 0.303      |
| cosine_recall@10    | 0.4414     |
| cosine_ndcg@10      | 0.2537     |
| cosine_mrr@10       | 0.1964     |
| **cosine_map@100**  | **0.2188** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.0937     |
| cosine_accuracy@3   | 0.2        |
| cosine_accuracy@5   | 0.2743     |
| cosine_accuracy@10  | 0.4177     |
| cosine_precision@1  | 0.0937     |
| cosine_precision@3  | 0.0667     |
| cosine_precision@5  | 0.0549     |
| cosine_precision@10 | 0.0418     |
| cosine_recall@1     | 0.0937     |
| cosine_recall@3     | 0.2        |
| cosine_recall@5     | 0.2743     |
| cosine_recall@10    | 0.4177     |
| cosine_ndcg@10      | 0.2305     |
| cosine_mrr@10       | 0.1738     |
| **cosine_map@100**  | **0.1978** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 8,769 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                             |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 5 tokens</li><li>mean: 49.22 tokens</li><li>max: 178 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.94 tokens</li><li>max: 48 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                             | anchor                                                                             |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges.</code>                                                                                                                    | <code>Quin és el benefici de les subvencions per a les entitats esportives?</code> |
  | <code>L'Ajuntament de Sitges atorga subvencions per a projectes i activitats d'interès públic o social que tinguin per finalitat les activitats esportives federades, escolars o populars desenvolupades per les entitats esportives i esportistes del municipi de Sitges al llarg de l'exercici per la qual es sol·licita la subvenció, i reuneixin les condicions assenyalades a les bases.</code> | <code>Quin és el període d'execució dels projectes i activitats esportives?</code> |
  | <code>Certificat on s'indica el nombre d'habitatges que configuren el padró de l'Impost sobre Béns Immobles del municipi o bé d'una part d'aquest.</code>                                                                                                                                                                                                                                            | <code>Quin és el contingut del certificat del nombre d'habitatges?</code>          |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 5
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.2914     | 10      | 3.6318        | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.5829     | 20      | 2.329         | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.8743     | 30      | 1.5614        | -                       | -                      | -                      | -                      | -                     | -                      |
| 0.9909     | 34      | -             | 0.2055                  | 0.1998                 | 0.2020                 | 0.2001                 | 0.1903                | 0.2019                 |
| 1.1658     | 40      | 1.2383        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.4572     | 50      | 0.9323        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.7486     | 60      | 0.6616        | -                       | -                      | -                      | -                      | -                     | -                      |
| 1.9818     | 68      | -             | 0.2244                  | 0.2063                 | 0.2223                 | 0.2166                 | 0.2011                | 0.2235                 |
| 2.0401     | 70      | 0.5545        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.3315     | 80      | 0.5043        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.6230     | 90      | 0.3542        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.9144     | 100     | 0.3095        | -                       | -                      | -                      | -                      | -                     | -                      |
| 2.9727     | 102     | -             | 0.2224                  | 0.2046                 | 0.2170                 | 0.2100                 | 0.1986                | 0.2144                 |
| 3.2058     | 110     | 0.2863        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.4973     | 120     | 0.2329        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.7887     | 130     | 0.2353        | -                       | -                      | -                      | -                      | -                     | -                      |
| 3.9927     | 137     | -             | 0.2197                  | 0.2112                 | 0.2098                 | 0.2154                 | 0.1949                | 0.2178                 |
| 4.0801     | 140     | 0.1759        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.3716     | 150     | 0.2308        | -                       | -                      | -                      | -                      | -                     | -                      |
| 4.6630     | 160     | 0.1656        | -                       | -                      | -                      | -                      | -                     | -                      |
| **4.9545** | **170** | **0.1812**    | **0.2186**              | **0.2188**             | **0.2113**             | **0.2118**             | **0.1978**            | **0.2234**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 3.0.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->