SentenceTransformer based on BAAI/bge-m3

This is a sentence-transformers model finetuned from BAAI/bge-m3 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("adriansanz/ST-tramits-sitges-005-5ep")
# Run inference
sentences = [
    'Les queixes, observacions i suggeriments són una eina important per a millorar la qualitat dels serveis municipals.',
    'Què és el que es busca amb les queixes, observacions i suggeriments?',
    'Quin és el propòsit dels ajuts econòmics?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.1437
cosine_accuracy@3 0.2819
cosine_accuracy@5 0.393
cosine_accuracy@10 0.5665
cosine_precision@1 0.1437
cosine_precision@3 0.094
cosine_precision@5 0.0786
cosine_precision@10 0.0566
cosine_recall@1 0.1437
cosine_recall@3 0.2819
cosine_recall@5 0.393
cosine_recall@10 0.5665
cosine_ndcg@10 0.3243
cosine_mrr@10 0.2507
cosine_map@100 0.2695

Information Retrieval

Metric Value
cosine_accuracy@1 0.147
cosine_accuracy@3 0.2871
cosine_accuracy@5 0.3901
cosine_accuracy@10 0.5631
cosine_precision@1 0.147
cosine_precision@3 0.0957
cosine_precision@5 0.078
cosine_precision@10 0.0563
cosine_recall@1 0.147
cosine_recall@3 0.2871
cosine_recall@5 0.3901
cosine_recall@10 0.5631
cosine_ndcg@10 0.3255
cosine_mrr@10 0.2533
cosine_map@100 0.2723

Information Retrieval

Metric Value
cosine_accuracy@1 0.1418
cosine_accuracy@3 0.2838
cosine_accuracy@5 0.389
cosine_accuracy@10 0.562
cosine_precision@1 0.1418
cosine_precision@3 0.0946
cosine_precision@5 0.0778
cosine_precision@10 0.0562
cosine_recall@1 0.1418
cosine_recall@3 0.2838
cosine_recall@5 0.389
cosine_recall@10 0.562
cosine_ndcg@10 0.3226
cosine_mrr@10 0.2497
cosine_map@100 0.2689

Information Retrieval

Metric Value
cosine_accuracy@1 0.1435
cosine_accuracy@3 0.2831
cosine_accuracy@5 0.385
cosine_accuracy@10 0.5551
cosine_precision@1 0.1435
cosine_precision@3 0.0944
cosine_precision@5 0.077
cosine_precision@10 0.0555
cosine_recall@1 0.1435
cosine_recall@3 0.2831
cosine_recall@5 0.385
cosine_recall@10 0.5551
cosine_ndcg@10 0.3205
cosine_mrr@10 0.2492
cosine_map@100 0.2685

Information Retrieval

Metric Value
cosine_accuracy@1 0.1392
cosine_accuracy@3 0.2795
cosine_accuracy@5 0.3838
cosine_accuracy@10 0.5534
cosine_precision@1 0.1392
cosine_precision@3 0.0932
cosine_precision@5 0.0768
cosine_precision@10 0.0553
cosine_recall@1 0.1392
cosine_recall@3 0.2795
cosine_recall@5 0.3838
cosine_recall@10 0.5534
cosine_ndcg@10 0.3176
cosine_mrr@10 0.2458
cosine_map@100 0.2649

Information Retrieval

Metric Value
cosine_accuracy@1 0.1403
cosine_accuracy@3 0.2753
cosine_accuracy@5 0.3698
cosine_accuracy@10 0.5361
cosine_precision@1 0.1403
cosine_precision@3 0.0918
cosine_precision@5 0.074
cosine_precision@10 0.0536
cosine_recall@1 0.1403
cosine_recall@3 0.2753
cosine_recall@5 0.3698
cosine_recall@10 0.5361
cosine_ndcg@10 0.3099
cosine_mrr@10 0.2412
cosine_map@100 0.2602

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,214 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 3 tokens
    • mean: 49.66 tokens
    • max: 149 tokens
    • min: 10 tokens
    • mean: 20.85 tokens
    • max: 48 tokens
  • Samples:
    positive anchor
    Ajuts per la reactivació de petites empreses i persones autònomes donades d’alta al règim especial de treballadors autònoms (RETA) amb una antiguitat superior als cinc anys (COVID19) Quin és el requisit per a les petites empreses per rebre ajuts?
    En cas de no poder desenvolupar el projecte o activitat per la qual s'ha sol·licitat la subvenció, l'entitat beneficiària pot renunciar a la subvenció. Puc renunciar a una subvenció si ja l'he rebut?
    L’Espai Jove de Sitges és l'equipament municipal on els joves poden dur a terme iniciatives pròpies i on també es desenvolupen d’altres impulsades per la regidoria de Joventut. Quin és el paper de la regidoria de Joventut a l'Espai Jove de Sitges?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.4908 10 3.3699 - - - - - -
0.9816 20 1.8761 0.2565 0.2430 0.2509 0.2499 0.2301 0.2567
1.4724 30 1.3111 - - - - - -
1.9632 40 0.8122 0.2636 0.2578 0.2629 0.2639 0.2486 0.2654
2.4540 50 0.5903 - - - - - -
2.9448 60 0.4306 - - - - - -
2.9939 61 - 0.2661 0.2636 0.2648 0.2659 0.2544 0.2694
3.4356 70 0.3553 - - - - - -
3.9264 80 0.2925 - - - - - -
3.9755 81 - 0.2701 0.2621 0.2663 0.2706 0.2602 0.2709
4.4172 90 0.2797 - - - - - -
4.9080 100 0.267 0.2695 0.2649 0.2685 0.2689 0.2602 0.2723
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.44.2
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 3.0.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
568M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for adriansanz/ST-tramits-sitges-005-5ep

Base model

BAAI/bge-m3
Finetuned
(197)
this model

Evaluation results