Aeoinum v1 BaseWeb 1B

A state-of-the-art language model for Russian language processing. This checkpoint contains a preliminary version of the model with 1.6 billion parameters. Trained only on web pages.

Models

Name N of parameters N of dataset tokens Context window
Aeonium-v1-BaseWeb-1B 1.6B 32B 4K
Aeonium-v1-Base-1B 1.6B In training 4K
Aeonium-v1-Chat-1B 1.6B In training 4K

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("aeonium/Aeonium-v1-Base-1.6B-checkpoint-20B")
model = AutoModelForCausalLM.from_pretrained("aeonium/Aeonium-v1-Base-1.6B-checkpoint-20B").cuda()

input_ids = tokenizer("Искусственный интеллект - это", return_tensors='pt').to(model.device)["input_ids"]
output = model.generate(input_ids, max_new_tokens=48, do_sample=True, temperature=0.7)
print(tokenizer.decode(output[0]))

Output:

Искусственный интеллект - это основа современной науки и техники. Его потенциал позволяет решать задачи, которые выходят за пределы человеческих возможностей. В работе над ними участвуют все: от ученых до инженеров и даже военных. В своей книге "Искусственный интеллект" автор книги, профессор Л

Dataset Detail

The dataset for pre-training is collected from public data, most of which are web pages in Russian. The total size of the data is 20B tokens.

Training Detail

The training is performed thanks to a grant from TPU Research Cloud on a TPU v4-32 node.

Copyright

The model is released under the Apache 2.0 license.

Downloads last month
6
Safetensors
Model size
1.64B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support