SentenceTransformer based on agentlans/deberta-v3-xsmall-zyda-2
This is a sentence-transformers model finetuned from agentlans/deberta-v3-xsmall-zyda-2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
It was finetuned in the same way as agentlans/deberta-v3-base-zyda-2-v2. However, the training loss is much higher probably due its small model size.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: agentlans/deberta-v3-xsmall-zyda-2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("agentlans/deberta-v3-xsmall-zyda-2-v2")
# Run inference
sentences = [
'The expansion of European colonies resulted in the dissemination of their cultural ideas and institutions to other regions.',
'How long do dogs bleed during menstruation?',
'The team added a second car for Thed Björk in 2006 , and was replaced by Richard Göransson in 2009 .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,079,040 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 7 tokens
- mean: 22.43 tokens
- max: 104 tokens
- min: 7 tokens
- mean: 20.92 tokens
- max: 77 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence_0 sentence_1 label Can attaching a CAR with cab companies such as OLA, Taxi for Sure, and Meru Cabs result in financial gain? What are the final returns after factoring in all practical earnings and expenses?
A problem is regarded as inherently difficult if its solution requires significant resources, whatever the algorithm used.
0.0
She was loaned the money with the specific aim of providing for the child's needs.
The Army's training and doctrine command spokesperson, Maj. Mike Kenfield, stated that the program had been recognized for its role in reducing non-lethal operations and that there were plans to expand the team's reach beyond Iraq and Afghanistan.
0.0
Two rotavirus vaccines against Rotavirus A infection are safe and effective in children : Rotarix by GlaxoSmithKline and RotaTeq by Merck .
contact lists were wiped after the makers of the game enjoyed by .
0.0
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0074 | 500 | 2.6583 |
0.0148 | 1000 | 1.5993 |
0.0222 | 1500 | 1.0375 |
0.0297 | 2000 | 0.8232 |
0.0371 | 2500 | 0.6996 |
0.0445 | 3000 | 0.6607 |
0.0519 | 3500 | 0.6087 |
0.0593 | 4000 | 0.5447 |
0.0667 | 4500 | 0.5691 |
0.0741 | 5000 | 0.5576 |
0.0816 | 5500 | 0.5405 |
0.0890 | 6000 | 0.4901 |
0.0964 | 6500 | 0.5432 |
0.1038 | 7000 | 0.4969 |
0.1112 | 7500 | 0.5058 |
0.1186 | 8000 | 0.4935 |
0.1260 | 8500 | 0.5072 |
0.1335 | 9000 | 0.4525 |
0.1409 | 9500 | 0.5121 |
0.1483 | 10000 | 0.5217 |
0.1557 | 10500 | 0.5012 |
0.1631 | 11000 | 0.4475 |
0.1705 | 11500 | 0.4788 |
0.1779 | 12000 | 0.4687 |
0.1853 | 12500 | 0.4651 |
0.1928 | 13000 | 0.4056 |
0.2002 | 13500 | 0.485 |
0.2076 | 14000 | 0.4738 |
0.2150 | 14500 | 0.4194 |
0.2224 | 15000 | 0.4522 |
0.2298 | 15500 | 0.5182 |
0.2372 | 16000 | 0.4746 |
0.2447 | 16500 | 0.4762 |
0.2521 | 17000 | 0.4804 |
0.2595 | 17500 | 0.4041 |
0.2669 | 18000 | 0.4 |
0.2743 | 18500 | 0.4459 |
0.2817 | 19000 | 0.4258 |
0.2891 | 19500 | 0.4218 |
0.2966 | 20000 | 0.4951 |
0.3040 | 20500 | 0.4687 |
0.3114 | 21000 | 0.446 |
0.3188 | 21500 | 0.5007 |
0.3262 | 22000 | 0.4506 |
0.3336 | 22500 | 0.4916 |
0.3410 | 23000 | 0.403 |
0.3485 | 23500 | 0.4527 |
0.3559 | 24000 | 0.4052 |
0.3633 | 24500 | 0.4387 |
0.3707 | 25000 | 0.4238 |
0.3781 | 25500 | 0.4208 |
0.3855 | 26000 | 0.4363 |
0.3929 | 26500 | 0.429 |
0.4004 | 27000 | 0.4837 |
0.4078 | 27500 | 0.4042 |
0.4152 | 28000 | 0.465 |
0.4226 | 28500 | 0.4259 |
0.4300 | 29000 | 0.4342 |
0.4374 | 29500 | 0.4521 |
0.4448 | 30000 | 0.397 |
0.4523 | 30500 | 0.4213 |
0.4597 | 31000 | 0.4309 |
0.4671 | 31500 | 0.473 |
0.4745 | 32000 | 0.4081 |
0.4819 | 32500 | 0.3937 |
0.4893 | 33000 | 0.4402 |
0.4967 | 33500 | 0.4685 |
0.5042 | 34000 | 0.4309 |
0.5116 | 34500 | 0.4349 |
0.5190 | 35000 | 0.4357 |
0.5264 | 35500 | 0.5066 |
0.5338 | 36000 | 0.4424 |
0.5412 | 36500 | 0.4532 |
0.5486 | 37000 | 0.4576 |
0.5560 | 37500 | 0.4634 |
0.5635 | 38000 | 0.4742 |
0.5709 | 38500 | 0.4565 |
0.5783 | 39000 | 0.4613 |
0.5857 | 39500 | 0.385 |
0.5931 | 40000 | 0.4613 |
0.6005 | 40500 | 0.4129 |
0.6079 | 41000 | 0.4066 |
0.6154 | 41500 | 0.4372 |
0.6228 | 42000 | 0.4426 |
0.6302 | 42500 | 0.4561 |
0.6376 | 43000 | 0.4557 |
0.6450 | 43500 | 0.4163 |
0.6524 | 44000 | 0.3948 |
0.6598 | 44500 | 0.4461 |
0.6673 | 45000 | 0.4717 |
0.6747 | 45500 | 0.3877 |
0.6821 | 46000 | 0.4421 |
0.6895 | 46500 | 0.4977 |
0.6969 | 47000 | 0.433 |
0.7043 | 47500 | 0.4292 |
0.7117 | 48000 | 0.4749 |
0.7192 | 48500 | 0.4418 |
0.7266 | 49000 | 0.4091 |
0.7340 | 49500 | 0.412 |
0.7414 | 50000 | 0.465 |
0.7488 | 50500 | 0.4649 |
0.7562 | 51000 | 0.4311 |
0.7636 | 51500 | 0.4238 |
0.7711 | 52000 | 0.4228 |
0.7785 | 52500 | 0.4491 |
0.7859 | 53000 | 0.4434 |
0.7933 | 53500 | 0.4364 |
0.8007 | 54000 | 0.435 |
0.8081 | 54500 | 0.4196 |
0.8155 | 55000 | 0.4866 |
0.8230 | 55500 | 0.4684 |
0.8304 | 56000 | 0.4264 |
0.8378 | 56500 | 0.4061 |
0.8452 | 57000 | 0.4813 |
0.8526 | 57500 | 0.4596 |
0.8600 | 58000 | 0.4602 |
0.8674 | 58500 | 0.4342 |
0.8749 | 59000 | 0.4358 |
0.8823 | 59500 | 0.4693 |
0.8897 | 60000 | 0.4794 |
0.8971 | 60500 | 0.4515 |
0.9045 | 61000 | 0.4574 |
0.9119 | 61500 | 0.388 |
0.9193 | 62000 | 0.408 |
0.9267 | 62500 | 0.4204 |
0.9342 | 63000 | 0.4001 |
0.9416 | 63500 | 0.4995 |
0.9490 | 64000 | 0.477 |
0.9564 | 64500 | 0.4395 |
0.9638 | 65000 | 0.4498 |
0.9712 | 65500 | 0.4893 |
0.9786 | 66000 | 0.4205 |
0.9861 | 66500 | 0.4511 |
0.9935 | 67000 | 0.4393 |
1.0009 | 67500 | 0.4694 |
1.0083 | 68000 | 0.4305 |
1.0157 | 68500 | 0.4272 |
1.0231 | 69000 | 0.3722 |
1.0305 | 69500 | 0.4147 |
1.0380 | 70000 | 0.4019 |
1.0454 | 70500 | 0.4306 |
1.0528 | 71000 | 0.4514 |
1.0602 | 71500 | 0.4377 |
1.0676 | 72000 | 0.4222 |
1.0750 | 72500 | 0.4682 |
1.0824 | 73000 | 0.4684 |
1.0899 | 73500 | 0.4234 |
1.0973 | 74000 | 0.4583 |
1.1047 | 74500 | 0.4659 |
1.1121 | 75000 | 0.4413 |
1.1195 | 75500 | 0.4591 |
1.1269 | 76000 | 0.4363 |
1.1343 | 76500 | 0.4202 |
1.1418 | 77000 | 0.4485 |
1.1492 | 77500 | 0.4817 |
1.1566 | 78000 | 0.4796 |
1.1640 | 78500 | 0.4041 |
1.1714 | 79000 | 0.3975 |
1.1788 | 79500 | 0.4199 |
1.1862 | 80000 | 0.4582 |
1.1937 | 80500 | 0.4115 |
1.2011 | 81000 | 0.4636 |
1.2085 | 81500 | 0.4611 |
1.2159 | 82000 | 0.4025 |
1.2233 | 82500 | 0.4725 |
1.2307 | 83000 | 0.4905 |
1.2381 | 83500 | 0.4346 |
1.2456 | 84000 | 0.4832 |
1.2530 | 84500 | 0.465 |
1.2604 | 85000 | 0.3884 |
1.2678 | 85500 | 0.4228 |
1.2752 | 86000 | 0.4086 |
1.2826 | 86500 | 0.4548 |
1.2900 | 87000 | 0.4022 |
1.2974 | 87500 | 0.5155 |
1.3049 | 88000 | 0.4158 |
1.3123 | 88500 | 0.4638 |
1.3197 | 89000 | 0.4645 |
1.3271 | 89500 | 0.4357 |
1.3345 | 90000 | 0.4144 |
1.3419 | 90500 | 0.412 |
1.3493 | 91000 | 0.3951 |
1.3568 | 91500 | 0.4384 |
1.3642 | 92000 | 0.4292 |
1.3716 | 92500 | 0.391 |
1.3790 | 93000 | 0.4262 |
1.3864 | 93500 | 0.4783 |
1.3938 | 94000 | 0.4474 |
1.4012 | 94500 | 0.4367 |
1.4087 | 95000 | 0.4055 |
1.4161 | 95500 | 0.4471 |
1.4235 | 96000 | 0.4472 |
1.4309 | 96500 | 0.4555 |
1.4383 | 97000 | 0.4854 |
1.4457 | 97500 | 0.389 |
1.4531 | 98000 | 0.4308 |
1.4606 | 98500 | 0.4565 |
1.4680 | 99000 | 0.4344 |
1.4754 | 99500 | 0.4332 |
1.4828 | 100000 | 0.4179 |
1.4902 | 100500 | 0.4546 |
1.4976 | 101000 | 0.4667 |
1.5050 | 101500 | 0.4418 |
1.5125 | 102000 | 0.4462 |
1.5199 | 102500 | 0.4841 |
1.5273 | 103000 | 0.4768 |
1.5347 | 103500 | 0.4072 |
1.5421 | 104000 | 0.453 |
1.5495 | 104500 | 0.4863 |
1.5569 | 105000 | 0.5193 |
1.5644 | 105500 | 0.4476 |
1.5718 | 106000 | 0.4141 |
1.5792 | 106500 | 0.4454 |
1.5866 | 107000 | 0.4072 |
1.5940 | 107500 | 0.4339 |
1.6014 | 108000 | 0.4519 |
1.6088 | 108500 | 0.4432 |
1.6163 | 109000 | 0.4408 |
1.6237 | 109500 | 0.4438 |
1.6311 | 110000 | 0.4188 |
1.6385 | 110500 | 0.4621 |
1.6459 | 111000 | 0.3997 |
1.6533 | 111500 | 0.3953 |
1.6607 | 112000 | 0.4459 |
1.6681 | 112500 | 0.4905 |
1.6756 | 113000 | 0.4067 |
1.6830 | 113500 | 0.4705 |
1.6904 | 114000 | 0.4883 |
1.6978 | 114500 | 0.4553 |
1.7052 | 115000 | 0.4644 |
1.7126 | 115500 | 0.4733 |
1.7200 | 116000 | 0.4591 |
1.7275 | 116500 | 0.4112 |
1.7349 | 117000 | 0.4354 |
1.7423 | 117500 | 0.4771 |
1.7497 | 118000 | 0.4418 |
1.7571 | 118500 | 0.4927 |
1.7645 | 119000 | 0.4273 |
1.7719 | 119500 | 0.4424 |
1.7794 | 120000 | 0.4979 |
1.7868 | 120500 | 0.4479 |
1.7942 | 121000 | 0.4344 |
1.8016 | 121500 | 0.4285 |
1.8090 | 122000 | 0.444 |
1.8164 | 122500 | 0.4389 |
1.8238 | 123000 | 0.4661 |
1.8313 | 123500 | 0.4203 |
1.8387 | 124000 | 0.4452 |
1.8461 | 124500 | 0.4731 |
1.8535 | 125000 | 0.4654 |
1.8609 | 125500 | 0.4802 |
1.8683 | 126000 | 0.445 |
1.8757 | 126500 | 0.4279 |
1.8832 | 127000 | 0.4832 |
1.8906 | 127500 | 0.4754 |
1.8980 | 128000 | 0.4675 |
1.9054 | 128500 | 0.4248 |
1.9128 | 129000 | 0.4189 |
1.9202 | 129500 | 0.4098 |
1.9276 | 130000 | 0.4308 |
1.9351 | 130500 | 0.4118 |
1.9425 | 131000 | 0.4508 |
1.9499 | 131500 | 0.4327 |
1.9573 | 132000 | 0.4557 |
1.9647 | 132500 | 0.4688 |
1.9721 | 133000 | 0.4743 |
1.9795 | 133500 | 0.4362 |
1.9870 | 134000 | 0.4782 |
1.9944 | 134500 | 0.4441 |
2.0018 | 135000 | 0.4344 |
2.0092 | 135500 | 0.4414 |
2.0166 | 136000 | 0.4432 |
2.0240 | 136500 | 0.3841 |
2.0314 | 137000 | 0.4706 |
2.0388 | 137500 | 0.455 |
2.0463 | 138000 | 0.4336 |
2.0537 | 138500 | 0.4215 |
2.0611 | 139000 | 0.4369 |
2.0685 | 139500 | 0.4539 |
2.0759 | 140000 | 0.4395 |
2.0833 | 140500 | 0.4303 |
2.0907 | 141000 | 0.4272 |
2.0982 | 141500 | 0.4857 |
2.1056 | 142000 | 0.4832 |
2.1130 | 142500 | 0.4579 |
2.1204 | 143000 | 0.4695 |
2.1278 | 143500 | 0.4174 |
2.1352 | 144000 | 0.4167 |
2.1426 | 144500 | 0.4766 |
2.1501 | 145000 | 0.4676 |
2.1575 | 145500 | 0.4878 |
2.1649 | 146000 | 0.4259 |
2.1723 | 146500 | 0.4185 |
2.1797 | 147000 | 0.4656 |
2.1871 | 147500 | 0.4278 |
2.1945 | 148000 | 0.4322 |
2.2020 | 148500 | 0.4321 |
2.2094 | 149000 | 0.439 |
2.2168 | 149500 | 0.4254 |
2.2242 | 150000 | 0.5099 |
2.2316 | 150500 | 0.4311 |
2.2390 | 151000 | 0.4404 |
2.2464 | 151500 | 0.4868 |
2.2539 | 152000 | 0.4572 |
2.2613 | 152500 | 0.3887 |
2.2687 | 153000 | 0.4222 |
2.2761 | 153500 | 0.4465 |
2.2835 | 154000 | 0.4298 |
2.2909 | 154500 | 0.4386 |
2.2983 | 155000 | 0.5101 |
2.3058 | 155500 | 0.4677 |
2.3132 | 156000 | 0.4299 |
2.3206 | 156500 | 0.4585 |
2.3280 | 157000 | 0.4335 |
2.3354 | 157500 | 0.4298 |
2.3428 | 158000 | 0.4167 |
2.3502 | 158500 | 0.4132 |
2.3577 | 159000 | 0.4135 |
2.3651 | 159500 | 0.4453 |
2.3725 | 160000 | 0.4093 |
2.3799 | 160500 | 0.4249 |
2.3873 | 161000 | 0.4968 |
2.3947 | 161500 | 0.4763 |
2.4021 | 162000 | 0.4496 |
2.4095 | 162500 | 0.452 |
2.4170 | 163000 | 0.4688 |
2.4244 | 163500 | 0.3847 |
2.4318 | 164000 | 0.4752 |
2.4392 | 164500 | 0.4463 |
2.4466 | 165000 | 0.3764 |
2.4540 | 165500 | 0.4515 |
2.4614 | 166000 | 0.4342 |
2.4689 | 166500 | 0.4163 |
2.4763 | 167000 | 0.4306 |
2.4837 | 167500 | 0.4131 |
2.4911 | 168000 | 0.4657 |
2.4985 | 168500 | 0.446 |
2.5059 | 169000 | 0.4342 |
2.5133 | 169500 | 0.4293 |
2.5208 | 170000 | 0.4388 |
2.5282 | 170500 | 0.4935 |
2.5356 | 171000 | 0.4124 |
2.5430 | 171500 | 0.4519 |
2.5504 | 172000 | 0.4886 |
2.5578 | 172500 | 0.4552 |
2.5652 | 173000 | 0.4628 |
2.5727 | 173500 | 0.4277 |
2.5801 | 174000 | 0.4048 |
2.5875 | 174500 | 0.434 |
2.5949 | 175000 | 0.43 |
2.6023 | 175500 | 0.4637 |
2.6097 | 176000 | 0.4151 |
2.6171 | 176500 | 0.4334 |
2.6246 | 177000 | 0.4592 |
2.6320 | 177500 | 0.4548 |
2.6394 | 178000 | 0.4622 |
2.6468 | 178500 | 0.3954 |
2.6542 | 179000 | 0.417 |
2.6616 | 179500 | 0.4429 |
2.6690 | 180000 | 0.4639 |
2.6765 | 180500 | 0.3764 |
2.6839 | 181000 | 0.4809 |
2.6913 | 181500 | 0.4518 |
2.6987 | 182000 | 0.4526 |
2.7061 | 182500 | 0.464 |
2.7135 | 183000 | 0.4487 |
2.7209 | 183500 | 0.4213 |
2.7284 | 184000 | 0.3954 |
2.7358 | 184500 | 0.4081 |
2.7432 | 185000 | 0.4707 |
2.7506 | 185500 | 0.4218 |
2.7580 | 186000 | 0.4552 |
2.7654 | 186500 | 0.4371 |
2.7728 | 187000 | 0.4286 |
2.7802 | 187500 | 0.4626 |
2.7877 | 188000 | 0.4075 |
2.7951 | 188500 | 0.4263 |
2.8025 | 189000 | 0.4215 |
2.8099 | 189500 | 0.428 |
2.8173 | 190000 | 0.4919 |
2.8247 | 190500 | 0.459 |
2.8321 | 191000 | 0.4122 |
2.8396 | 191500 | 0.4404 |
2.8470 | 192000 | 0.4358 |
2.8544 | 192500 | 0.472 |
2.8618 | 193000 | 0.4541 |
2.8692 | 193500 | 0.4378 |
2.8766 | 194000 | 0.4281 |
2.8840 | 194500 | 0.4745 |
2.8915 | 195000 | 0.4642 |
2.8989 | 195500 | 0.4637 |
2.9063 | 196000 | 0.4311 |
2.9137 | 196500 | 0.3999 |
2.9211 | 197000 | 0.4125 |
2.9285 | 197500 | 0.426 |
2.9359 | 198000 | 0.4357 |
2.9434 | 198500 | 0.4743 |
2.9508 | 199000 | 0.4519 |
2.9582 | 199500 | 0.4294 |
2.9656 | 200000 | 0.4603 |
2.9730 | 200500 | 0.4824 |
2.9804 | 201000 | 0.4003 |
2.9878 | 201500 | 0.4161 |
2.9953 | 202000 | 0.4853 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.43.3
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for agentlans/deberta-v3-xsmall-zyda-2-v2
Base model
microsoft/deberta-v3-xsmall
Finetuned
agentlans/deberta-v3-xsmall-zyda-2