license: apache-2.0 | |
tags: | |
- generated_from_trainer | |
datasets: | |
- tweet_eval | |
metrics: | |
- precision | |
- recall | |
model-index: | |
- name: bert-emotion | |
results: | |
- task: | |
name: Text Classification | |
type: text-classification | |
dataset: | |
name: tweet_eval | |
type: tweet_eval | |
config: emotion | |
split: validation | |
args: emotion | |
metrics: | |
- name: Precision | |
type: precision | |
value: 0.7505623807659564 | |
- name: Recall | |
type: recall | |
value: 0.7243031825553111 | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# bert-emotion | |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the tweet_eval dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 1.1413 | |
- Precision: 0.7506 | |
- Recall: 0.7243 | |
- Fscore: 0.7340 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- train_batch_size: 4 | |
- eval_batch_size: 4 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 3 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | | |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | |
| 0.8556 | 1.0 | 815 | 0.7854 | 0.7461 | 0.5929 | 0.6088 | | |
| 0.5369 | 2.0 | 1630 | 0.9014 | 0.7549 | 0.7278 | 0.7359 | | |
| 0.2571 | 3.0 | 2445 | 1.1413 | 0.7506 | 0.7243 | 0.7340 | | |
### Framework versions | |
- Transformers 4.29.2 | |
- Pytorch 2.0.1+cu118 | |
- Datasets 2.12.0 | |
- Tokenizers 0.13.3 | |