See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-8B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ahmedelgebaly/SQuad_SciQ_HotpotQA_Alpaca_Equal
type: alpaca
split: train
test_datasets:
- path: ahmedelgebaly/SQuad_SciQ_HotpotQA_Alpaca_Equal
type: alpaca
split: validation
dataset_prepared_path:
output_dir: ./outputs/qlora-out
adapter: qlora
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64 #Before it was 16
lora_dropout: 0.05
lora_target_modules: #Before it was empty
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: llama-3.1-8b-Squad_SciQ_HotpotQA_Equal_E3
wandb_entity:
wandb_watch:
wandb_name: llama-3.1-8b-Squad_SciQ_HotpotQA_Equal_E3
wandb_log_model:
hub_model_id: ahmedelgebaly/llama-3.1-8b-Squad_SciQ_HotpotQA_Equal_E3
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: true #Before it was false
bf16: auto
tf32: false
gradient_checkpointing: true
flash_attention: true
warmup_steps: 50 #Before it was 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
llama-3.1-8b-Squad_SciQ_HotpotQA_Equal_E3
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9982
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0036 | 1 | 1.7171 |
0.8618 | 0.2527 | 70 | 0.9238 |
0.801 | 0.5054 | 140 | 0.8990 |
0.8208 | 0.7581 | 210 | 0.8868 |
0.7207 | 1.0081 | 280 | 0.8757 |
0.6826 | 1.2608 | 350 | 0.8944 |
0.6631 | 1.5135 | 420 | 0.8995 |
0.6935 | 1.7662 | 490 | 0.8873 |
0.4885 | 2.0171 | 560 | 0.9172 |
0.4611 | 2.2699 | 630 | 0.9876 |
0.4425 | 2.5226 | 700 | 0.9970 |
0.4339 | 2.7753 | 770 | 0.9982 |
Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ahmedelgebaly/llama-3.1-8b-Squad_SciQ_HotpotQA_Equal_E3
Base model
meta-llama/Llama-3.1-8B