tags:
- ColBERT
- PyLate
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:533177
- loss:Distillation
base_model: jhu-clsp/ettin-encoder-17m
datasets:
- Speedsy/cleaned-ms-marco-bge-gemma-from-ligton
pipeline_tag: sentence-similarity
library_name: PyLate
metrics:
- MaxSim_accuracy@1
- MaxSim_accuracy@3
- MaxSim_accuracy@5
- MaxSim_accuracy@10
- MaxSim_precision@1
- MaxSim_precision@3
- MaxSim_precision@5
- MaxSim_precision@10
- MaxSim_recall@1
- MaxSim_recall@3
- MaxSim_recall@5
- MaxSim_recall@10
- MaxSim_ndcg@10
- MaxSim_mrr@10
- MaxSim_map@100
model-index:
- name: PyLate model based on jhu-clsp/ettin-encoder-17m
results:
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.26
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.42
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.5
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.74
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.26
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.15999999999999998
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.11600000000000002
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.092
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.13499999999999998
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.215
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2533333333333333
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.36666666666666664
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.29046566923016665
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.3753571428571428
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.2288474708316239
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: MaxSim_accuracy@1
value: 0.72
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.86
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.92
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.94
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.72
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.62
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.5559999999999999
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.486
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.07317816591767387
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.16578829322639302
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.21602211788294917
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.33395660972359953
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5879701952218912
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7981904761904762
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.4653911951587876
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: MaxSim_accuracy@1
value: 0.88
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.94
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.96
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.98
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.88
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.32666666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.20399999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.10799999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.8166666666666668
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.8933333333333333
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.9233333333333333
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.96
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.904750880683694
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9111904761904762
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8780844155844156
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.62
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.66
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.74
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.2733333333333333
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.20799999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.132
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.2409126984126984
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.3758492063492064
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.4422857142857143
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.5564523809523809
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4639924721325262
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5364682539682539
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.38776210596346167
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: MaxSim_accuracy@1
value: 0.88
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 1
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.88
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.5466666666666665
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.344
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.17999999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.44
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.82
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.86
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.9
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.8574760963060821
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.9333333333333332
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.799964380447139
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: MaxSim_accuracy@1
value: 0.52
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.66
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.78
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.82
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.52
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.22
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.15600000000000003
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.08199999999999999
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.52
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.66
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.78
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.82
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6644746347246161
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6150555555555556
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6240256785755237
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.52
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.64
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.66
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3466666666666666
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.32799999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.25800000000000006
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.04328552205779273
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.0766231938568144
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.11774321091803387
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.14122996307881844
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3254678017637849
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5031904761904762
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.14596595568471235
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: MaxSim_accuracy@1
value: 0.5
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.78
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.8
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.84
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.26
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.16399999999999998
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.088
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.47
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.72
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.75
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.8
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.6545121111640885
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6283333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.6016451583332388
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: MaxSim_accuracy@1
value: 0.82
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.98
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.82
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.38666666666666655
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.24799999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.12599999999999997
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.7340000000000001
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.9286666666666668
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.9626666666666668
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.966
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.904268856532771
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8973333333333333
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.8789129063746711
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: MaxSim_accuracy@1
value: 0.44
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.64
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.68
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.44
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3066666666666667
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.23999999999999996
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.16
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.09166666666666667
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.18966666666666665
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.24566666666666662
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.32666666666666666
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.3302289015435344
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.5572222222222223
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.2550652569095046
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: MaxSim_accuracy@1
value: 0.18
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.56
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.62
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.76
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.18
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.18666666666666668
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.12400000000000003
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.07600000000000001
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.18
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.56
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.62
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.76
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.4645129865259301
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.370047619047619
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.3781205313205313
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: MaxSim_accuracy@1
value: 0.62
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.8
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.86
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.88
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.62
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.27999999999999997
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.18799999999999997
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.1
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.595
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.77
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.845
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.88
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.7484873429234673
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.7096666666666667
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.7040186906589345
name: Maxsim Map@100
- task:
type: py-late-information-retrieval
name: Py Late Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: MaxSim_accuracy@1
value: 0.673469387755102
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.9795918367346939
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 1
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 1
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.673469387755102
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.6598639455782312
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.6285714285714286
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.5
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.044158696154151085
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.1348057247941035
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.2118327372127382
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.31512231200199337
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.5654862366863922
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.8136054421768706
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.41218683538450235
name: Maxsim Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: MaxSim_accuracy@1
value: 0.5671899529042386
name: Maxsim Accuracy@1
- type: MaxSim_accuracy@3
value: 0.7507378335949764
name: Maxsim Accuracy@3
- type: MaxSim_accuracy@5
value: 0.8015384615384614
name: Maxsim Accuracy@5
- type: MaxSim_accuracy@10
value: 0.8584615384615385
name: Maxsim Accuracy@10
- type: MaxSim_precision@1
value: 0.5671899529042386
name: Maxsim Precision@1
- type: MaxSim_precision@3
value: 0.3517844060701203
name: Maxsim Precision@3
- type: MaxSim_precision@5
value: 0.2695824175824175
name: Maxsim Precision@5
- type: MaxSim_precision@10
value: 0.18369230769230768
name: Maxsim Precision@10
- type: MaxSim_recall@1
value: 0.3372206473750499
name: Maxsim Recall@1
- type: MaxSim_recall@3
value: 0.5007486988379373
name: Maxsim Recall@3
- type: MaxSim_recall@5
value: 0.5559910600230336
name: Maxsim Recall@5
- type: MaxSim_recall@10
value: 0.6250841999300097
name: Maxsim Recall@10
- type: MaxSim_ndcg@10
value: 0.597084168110688
name: Maxsim Ndcg@10
- type: MaxSim_mrr@10
value: 0.6653072562358275
name: Maxsim Mrr@10
- type: MaxSim_map@100
value: 0.5199992754790036
name: Maxsim Map@100
PyLate model based on jhu-clsp/ettin-encoder-17m
This is a PyLate model finetuned from jhu-clsp/ettin-encoder-17m on the train dataset. It maps sentences & paragraphs to sequences of 128-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
Model Details
Model Description
- Model Type: PyLate model
- Base model: jhu-clsp/ettin-encoder-17m
- Document Length: 300 tokens
- Query Length: 32 tokens
- Output Dimensionality: 128 tokens
- Similarity Function: MaxSim
- Training Dataset:
Model Sources
- Documentation: PyLate Documentation
- Repository: PyLate on GitHub
- Hugging Face: PyLate models on Hugging Face
Full Model Architecture
ColBERT(
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Dense({'in_features': 256, 'out_features': 128, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
First install the PyLate library:
pip install -U pylate
Retrieval
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
Indexing documents
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
from pylate import indexes, models, retrieve
# Step 1: Load the ColBERT model
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
# Step 2: Initialize the Voyager index
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
override=True, # This overwrites the existing index if any
)
# Step 3: Encode the documents
documents_ids = ["1", "2", "3"]
documents = ["document 1 text", "document 2 text", "document 3 text"]
documents_embeddings = model.encode(
documents,
batch_size=32,
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
show_progress_bar=True,
)
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
index.add_documents(
documents_ids=documents_ids,
documents_embeddings=documents_embeddings,
)
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
# To load an index, simply instantiate it with the correct folder/name and without overriding it
index = indexes.Voyager(
index_folder="pylate-index",
index_name="index",
)
Retrieving top-k documents for queries
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries. To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
# Step 1: Initialize the ColBERT retriever
retriever = retrieve.ColBERT(index=index)
# Step 2: Encode the queries
queries_embeddings = model.encode(
["query for document 3", "query for document 1"],
batch_size=32,
is_query=True, # # Ensure that it is set to False to indicate that these are queries
show_progress_bar=True,
)
# Step 3: Retrieve top-k documents
scores = retriever.retrieve(
queries_embeddings=queries_embeddings,
k=10, # Retrieve the top 10 matches for each query
)
Reranking
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
from pylate import rank, models
queries = [
"query A",
"query B",
]
documents = [
["document A", "document B"],
["document 1", "document C", "document B"],
]
documents_ids = [
[1, 2],
[1, 3, 2],
]
model = models.ColBERT(
model_name_or_path=pylate_model_id,
)
queries_embeddings = model.encode(
queries,
is_query=True,
)
documents_embeddings = model.encode(
documents,
is_query=False,
)
reranked_documents = rank.rerank(
documents_ids=documents_ids,
queries_embeddings=queries_embeddings,
documents_embeddings=documents_embeddings,
)
Evaluation
Metrics
Py Late Information Retrieval
- Dataset:
['NanoClimateFEVER', 'NanoDBPedia', 'NanoFEVER', 'NanoFiQA2018', 'NanoHotpotQA', 'NanoMSMARCO', 'NanoNFCorpus', 'NanoNQ', 'NanoQuoraRetrieval', 'NanoSCIDOCS', 'NanoArguAna', 'NanoSciFact', 'NanoTouche2020']
- Evaluated with
pylate.evaluation.pylate_information_retrieval_evaluator.PyLateInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MaxSim_accuracy@1 | 0.26 | 0.72 | 0.88 | 0.44 | 0.88 | 0.52 | 0.44 | 0.5 | 0.82 | 0.44 | 0.18 | 0.62 | 0.6735 |
MaxSim_accuracy@3 | 0.42 | 0.86 | 0.94 | 0.62 | 1.0 | 0.66 | 0.52 | 0.78 | 0.98 | 0.64 | 0.56 | 0.8 | 0.9796 |
MaxSim_accuracy@5 | 0.5 | 0.92 | 0.96 | 0.66 | 1.0 | 0.78 | 0.64 | 0.8 | 1.0 | 0.68 | 0.62 | 0.86 | 1.0 |
MaxSim_accuracy@10 | 0.74 | 0.94 | 0.98 | 0.74 | 1.0 | 0.82 | 0.66 | 0.84 | 1.0 | 0.8 | 0.76 | 0.88 | 1.0 |
MaxSim_precision@1 | 0.26 | 0.72 | 0.88 | 0.44 | 0.88 | 0.52 | 0.44 | 0.5 | 0.82 | 0.44 | 0.18 | 0.62 | 0.6735 |
MaxSim_precision@3 | 0.16 | 0.62 | 0.3267 | 0.2733 | 0.5467 | 0.22 | 0.3467 | 0.26 | 0.3867 | 0.3067 | 0.1867 | 0.28 | 0.6599 |
MaxSim_precision@5 | 0.116 | 0.556 | 0.204 | 0.208 | 0.344 | 0.156 | 0.328 | 0.164 | 0.248 | 0.24 | 0.124 | 0.188 | 0.6286 |
MaxSim_precision@10 | 0.092 | 0.486 | 0.108 | 0.132 | 0.18 | 0.082 | 0.258 | 0.088 | 0.126 | 0.16 | 0.076 | 0.1 | 0.5 |
MaxSim_recall@1 | 0.135 | 0.0732 | 0.8167 | 0.2409 | 0.44 | 0.52 | 0.0433 | 0.47 | 0.734 | 0.0917 | 0.18 | 0.595 | 0.0442 |
MaxSim_recall@3 | 0.215 | 0.1658 | 0.8933 | 0.3758 | 0.82 | 0.66 | 0.0766 | 0.72 | 0.9287 | 0.1897 | 0.56 | 0.77 | 0.1348 |
MaxSim_recall@5 | 0.2533 | 0.216 | 0.9233 | 0.4423 | 0.86 | 0.78 | 0.1177 | 0.75 | 0.9627 | 0.2457 | 0.62 | 0.845 | 0.2118 |
MaxSim_recall@10 | 0.3667 | 0.334 | 0.96 | 0.5565 | 0.9 | 0.82 | 0.1412 | 0.8 | 0.966 | 0.3267 | 0.76 | 0.88 | 0.3151 |
MaxSim_ndcg@10 | 0.2905 | 0.588 | 0.9048 | 0.464 | 0.8575 | 0.6645 | 0.3255 | 0.6545 | 0.9043 | 0.3302 | 0.4645 | 0.7485 | 0.5655 |
MaxSim_mrr@10 | 0.3754 | 0.7982 | 0.9112 | 0.5365 | 0.9333 | 0.6151 | 0.5032 | 0.6283 | 0.8973 | 0.5572 | 0.37 | 0.7097 | 0.8136 |
MaxSim_map@100 | 0.2288 | 0.4654 | 0.8781 | 0.3878 | 0.8 | 0.624 | 0.146 | 0.6016 | 0.8789 | 0.2551 | 0.3781 | 0.704 | 0.4122 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
pylate.evaluation.nano_beir_evaluator.NanoBEIREvaluator
Metric | Value |
---|---|
MaxSim_accuracy@1 | 0.5672 |
MaxSim_accuracy@3 | 0.7507 |
MaxSim_accuracy@5 | 0.8015 |
MaxSim_accuracy@10 | 0.8585 |
MaxSim_precision@1 | 0.5672 |
MaxSim_precision@3 | 0.3518 |
MaxSim_precision@5 | 0.2696 |
MaxSim_precision@10 | 0.1837 |
MaxSim_recall@1 | 0.3372 |
MaxSim_recall@3 | 0.5007 |
MaxSim_recall@5 | 0.556 |
MaxSim_recall@10 | 0.6251 |
MaxSim_ndcg@10 | 0.5971 |
MaxSim_mrr@10 | 0.6653 |
MaxSim_map@100 | 0.52 |
Training Details
Training Dataset
train
- Dataset: train at 63f51a3
- Size: 533,177 training samples
- Columns:
query_id
,document_ids
, andscores
- Approximate statistics based on the first 1000 samples:
query_id document_ids scores type int list list details - 264: ~0.10%
- 836: ~0.10%
- 3582: ~0.10%
- 4599: ~0.10%
- 4645: ~0.10%
- 4853: ~0.10%
- 5154: ~0.10%
- 7504: ~0.10%
- 12254: ~0.10%
- 12283: ~0.10%
- 12916: ~0.10%
- 14049: ~0.10%
- 14587: ~0.10%
- 14828: ~0.10%
- 15674: ~0.10%
- 15813: ~0.10%
- 16728: ~0.10%
- 22006: ~0.10%
- 23675: ~0.10%
- 24199: ~0.10%
- 25323: ~0.10%
- 29213: ~0.10%
- 32344: ~0.10%
- 34604: ~0.10%
- 35424: ~0.10%
- 36148: ~0.10%
- 37826: ~0.10%
- 38185: ~0.10%
- 38242: ~0.10%
- 39839: ~0.10%
- 42077: ~0.10%
- 43614: ~0.10%
- 45073: ~0.10%
- 46289: ~0.10%
- 47507: ~0.10%
- 48005: ~0.10%
- 48785: ~0.10%
- 49216: ~0.10%
- 49636: ~0.10%
- 49970: ~0.10%
- 51145: ~0.10%
- 52075: ~0.10%
- 52094: ~0.10%
- 52725: ~0.10%
- 52788: ~0.10%
- 54210: ~0.10%
- 55032: ~0.10%
- 59546: ~0.10%
- 60941: ~0.10%
- 62649: ~0.10%
- 63333: ~0.10%
- 64197: ~0.10%
- 64879: ~0.10%
- 67608: ~0.10%
- 67627: ~0.10%
- 69463: ~0.10%
- 70002: ~0.10%
- 70429: ~0.10%
- 72166: ~0.10%
- 72518: ~0.10%
- 72607: ~0.10%
- 72791: ~0.10%
- 73325: ~0.10%
- 74078: ~0.10%
- 74857: ~0.10%
- 75323: ~0.10%
- 75816: ~0.10%
- 76929: ~0.10%
- 77306: ~0.10%
- 77845: ~0.10%
- 77889: ~0.10%
- 78077: ~0.10%
- 78256: ~0.10%
- 78401: ~0.10%
- 78798: ~0.10%
- 80329: ~0.10%
- 80871: ~0.10%
- 81089: ~0.10%
- 82179: ~0.10%
- 82883: ~0.10%
- 84168: ~0.10%
- 86891: ~0.10%
- 88535: ~0.10%
- 88953: ~0.10%
- 89346: ~0.10%
- 89386: ~0.10%
- 90699: ~0.10%
- 90795: ~0.10%
- 91367: ~0.10%
- 91795: ~0.10%
- 91834: ~0.10%
- 92070: ~0.10%
- 92523: ~0.10%
- 92753: ~0.10%
- 92787: ~0.10%
- 93317: ~0.10%
- 96382: ~0.10%
- 96455: ~0.10%
- 97274: ~0.10%
- 97603: ~0.10%
- 98140: ~0.10%
- 101205: ~0.10%
- 101305: ~0.10%
- 102707: ~0.10%
- 103074: ~0.10%
- 105437: ~0.10%
- 108207: ~0.10%
- 109776: ~0.10%
- 112056: ~0.10%
- 112955: ~0.10%
- 112977: ~0.10%
- 113635: ~0.10%
- 115551: ~0.10%
- 116098: ~0.10%
- 118057: ~0.10%
- 120298: ~0.10%
- 121703: ~0.10%
- 123429: ~0.10%
- 125043: ~0.10%
- 125979: ~0.10%
- 126851: ~0.10%
- 128218: ~0.10%
- 128804: ~0.10%
- 129598: ~0.10%
- 131299: ~0.10%
- 132114: ~0.10%
- 133553: ~0.10%
- 133696: ~0.10%
- 134460: ~0.10%
- 137602: ~0.10%
- 137679: ~0.10%
- 138121: ~0.10%
- 138260: ~0.10%
- 139039: ~0.10%
- 140651: ~0.10%
- 142305: ~0.10%
- 145653: ~0.10%
- 145683: ~0.10%
- 145763: ~0.10%
- 150202: ~0.10%
- 151135: ~0.10%
- 152307: ~0.10%
- 153693: ~0.10%
- 154470: ~0.10%
- 155587: ~0.10%
- 157602: ~0.10%
- 158565: ~0.10%
- 159177: ~0.10%
- 159224: ~0.10%
- 159341: ~0.10%
- 159892: ~0.10%
- 161881: ~0.10%
- 162414: ~0.10%
- 163765: ~0.10%
- 165888: ~0.10%
- 167756: ~0.10%
- 168048: ~0.10%
- 168894: ~0.10%
- 169991: ~0.10%
- 170731: ~0.10%
- 171705: ~0.10%
- 176165: ~0.10%
- 176798: ~0.10%
- 180259: ~0.10%
- 182660: ~0.10%
- 183930: ~0.10%
- 184045: ~0.10%
- 184676: ~0.10%
- 185294: ~0.10%
- 186475: ~0.10%
- 187155: ~0.10%
- 189571: ~0.10%
- 191383: ~0.10%
- 192165: ~0.10%
- 194207: ~0.10%
- 195056: ~0.10%
- 197377: ~0.10%
- 198546: ~0.10%
- 200183: ~0.10%
- 202122: ~0.10%
- 203519: ~0.10%
- 206220: ~0.10%
- 209739: ~0.10%
- 210554: ~0.10%
- 212638: ~0.10%
- 213096: ~0.10%
- 213410: ~0.10%
- 217541: ~0.10%
- 220993: ~0.10%
- 223913: ~0.10%
- 224657: ~0.10%
- 227497: ~0.10%
- 227726: ~0.10%
- 228099: ~0.10%
- 228451: ~0.10%
- 231416: ~0.10%
- 234348: ~0.10%
- 235869: ~0.10%
- 237784: ~0.10%
- 240739: ~0.10%
- 246495: ~0.10%
- 246821: ~0.10%
- 248675: ~0.10%
- 249798: ~0.10%
- 249962: ~0.10%
- 249977: ~0.10%
- 250019: ~0.10%
- 250548: ~0.10%
- 251089: ~0.10%
- 254878: ~0.10%
- 255183: ~0.10%
- 255727: ~0.10%
- 256321: ~0.10%
- 258276: ~0.10%
- 260993: ~0.10%
- 261225: ~0.10%
- 261247: ~0.10%
- 262123: ~0.10%
- 262508: ~0.10%
- 262950: ~0.10%
- 266047: ~0.10%
- 267089: ~0.10%
- 267192: ~0.10%
- 268642: ~0.10%
- 273171: ~0.10%
- 273864: ~0.10%
- 274521: ~0.10%
- 274586: ~0.10%
- 275037: ~0.10%
- 275643: ~0.10%
- 276744: ~0.10%
- 277212: ~0.10%
- 277990: ~0.10%
- 280012: ~0.10%
- 281699: ~0.10%
- 282128: ~0.10%
- 283913: ~0.10%
- 284268: ~0.10%
- 285905: ~0.10%
- 287456: ~0.10%
- 287506: ~0.10%
- 288154: ~0.10%
- 288286: ~0.10%
- 289046: ~0.10%
- 292211: ~0.10%
- 292588: ~0.10%
- 293357: ~0.10%
- 294123: ~0.10%
- 295125: ~0.10%
- 299287: ~0.10%
- 300622: ~0.10%
- 302135: ~0.10%
- 303224: ~0.10%
- 304353: ~0.10%
- 304820: ~0.10%
- 305508: ~0.10%
- 310215: ~0.10%
- 310236: ~0.10%
- 310409: ~0.10%
- 311231: ~0.10%
- 312821: ~0.10%
- 314244: ~0.10%
- 314415: ~0.10%
- 314745: ~0.10%
- 316385: ~0.10%
- 317442: ~0.10%
- 318639: ~0.10%
- 318652: ~0.10%
- 320855: ~0.10%
- 321983: ~0.10%
- 322114: ~0.10%
- 323196: ~0.10%
- 324868: ~0.10%
- 327581: ~0.10%
- 329337: ~0.10%
- 330641: ~0.10%
- 331572: ~0.10%
- 331650: ~0.10%
- 331993: ~0.10%
- 334757: ~0.10%
- 336561: ~0.10%
- 336791: ~0.10%
- 337002: ~0.10%
- 338332: ~0.10%
- 338456: ~0.10%
- 339065: ~0.10%
- 339556: ~0.10%
- 339755: ~0.10%
- 339870: ~0.10%
- 340599: ~0.20%
- 341156: ~0.10%
- 342121: ~0.10%
- 343411: ~0.10%
- 344860: ~0.10%
- 345924: ~0.10%
- 346421: ~0.10%
- 346425: ~0.10%
- 348157: ~0.10%
- 351281: ~0.10%
- 351858: ~0.10%
- 353008: ~0.10%
- 353748: ~0.10%
- 359787: ~0.10%
- 359893: ~0.10%
- 360168: ~0.10%
- 361127: ~0.10%
- 362220: ~0.10%
- 362560: ~0.10%
- 364559: ~0.10%
- 366835: ~0.10%
- 367185: ~0.10%
- 369045: ~0.10%
- 371113: ~0.10%
- 375630: ~0.10%
- 376044: ~0.10%
- 376524: ~0.10%
- 377735: ~0.10%
- 378574: ~0.10%
- 379749: ~0.10%
- 379953: ~0.10%
- 384364: ~0.10%
- 384398: ~0.10%
- 384751: ~0.10%
- 385758: ~0.10%
- 385893: ~0.10%
- 386098: ~0.10%
- 387205: ~0.10%
- 387374: ~0.10%
- 388450: ~0.10%
- 388589: ~0.10%
- 388593: ~0.10%
- 389571: ~0.10%
- 389572: ~0.10%
- 391531: ~0.10%
- 391857: ~0.10%
- 393174: ~0.10%
- 393426: ~0.10%
- 398132: ~0.10%
- 398721: ~0.10%
- 399016: ~0.10%
- 399589: ~0.10%
- 400259: ~0.10%
- 401489: ~0.10%
- 401601: ~0.10%
- 403876: ~0.10%
- 403897: ~0.10%
- 404830: ~0.10%
- 406102: ~0.10%
- 406397: ~0.10%
- 407151: ~0.10%
- 407608: ~0.10%
- 409373: ~0.10%
- 410084: ~0.10%
- 411693: ~0.10%
- 411984: ~0.10%
- 412214: ~0.10%
- 412560: ~0.10%
- 413117: ~0.10%
- 413563: ~0.10%
- 413660: ~0.10%
- 414337: ~0.10%
- 416391: ~0.10%
- 417066: ~0.10%
- 417198: ~0.10%
- 417751: ~0.10%
- 417778: ~0.10%
- 420257: ~0.10%
- 420787: ~0.10%
- 421001: ~0.10%
- 421045: ~0.10%
- 421354: ~0.10%
- 421738: ~0.10%
- 429057: ~0.10%
- 429459: ~0.10%
- 430319: ~0.10%
- 431215: ~0.10%
- 431332: ~0.10%
- 432097: ~0.10%
- 432283: ~0.10%
- 435353: ~0.10%
- 437793: ~0.10%
- 438297: ~0.10%
- 439016: ~0.10%
- 439129: ~0.10%
- 439217: ~0.10%
- 439755: ~0.10%
- 440343: ~0.10%
- 440506: ~0.10%
- 441030: ~0.10%
- 441509: ~0.10%
- 443408: ~0.10%
- 443686: ~0.10%
- 445516: ~0.10%
- 445999: ~0.10%
- 447039: ~0.10%
- 447219: ~0.10%
- 447298: ~0.10%
- 453040: ~0.10%
- 453745: ~0.10%
- 454869: ~0.10%
- 455323: ~0.10%
- 456224: ~0.10%
- 456251: ~0.10%
- 457065: ~0.10%
- 459890: ~0.10%
- 463716: ~0.10%
- 465235: ~0.10%
- 465388: ~0.10%
- 470344: ~0.10%
- 470470: ~0.10%
- 471875: ~0.10%
- 472462: ~0.10%
- 474016: ~0.10%
- 476794: ~0.10%
- 479266: ~0.10%
- 479360: ~0.10%
- 480621: ~0.10%
- 482154: ~0.10%
- 483014: ~0.10%
- 485031: ~0.10%
- 485828: ~0.10%
- 486664: ~0.10%
- 488266: ~0.10%
- 489488: ~0.10%
- 490249: ~0.10%
- 490992: ~0.10%
- 491894: ~0.10%
- 491983: ~0.10%
- 492620: ~0.10%
- 492904: ~0.10%
- 493035: ~0.10%
- 493461: ~0.10%
- 494255: ~0.10%
- 496473: ~0.10%
- 496474: ~0.10%
- 496516: ~0.10%
- 496813: ~0.10%
- 496853: ~0.10%
- 499553: ~0.10%
- 499565: ~0.10%
- 499737: ~0.10%
- 500546: ~0.10%
- 501510: ~0.10%
- 501837: ~0.10%
- 502910: ~0.10%
- 510559: ~0.10%
- 511473: ~0.10%
- 512440: ~0.10%
- 513832: ~0.10%
- 514106: ~0.10%
- 514902: ~0.10%
- 515053: ~0.10%
- 515507: ~0.10%
- 516205: ~0.10%
- 519323: ~0.10%
- 520796: ~0.10%
- 521492: ~0.10%
- 522112: ~0.10%
- 523814: ~0.10%
- 525505: ~0.10%
- 525583: ~0.10%
- 525764: ~0.10%
- 528105: ~0.10%
- 529692: ~0.10%
- 532014: ~0.10%
- 534952: ~0.10%
- 538836: ~0.10%
- 539326: ~0.10%
- 539504: ~0.10%
- 541861: ~0.10%
- 542925: ~0.10%
- 544853: ~0.10%
- 545091: ~0.10%
- 545394: ~0.10%
- 546521: ~0.10%
- 546527: ~0.10%
- 548007: ~0.10%
- 548100: ~0.10%
- 550372: ~0.10%
- 554548: ~0.10%
- 560711: ~0.10%
- 560886: ~0.10%
- 561084: ~0.10%
- 561114: ~0.10%
- 561329: ~0.10%
- 561838: ~0.10%
- 561946: ~0.10%
- 562174: ~0.10%
- 562185: ~0.10%
- 564894: ~0.10%
- 566373: ~0.10%
- 566884: ~0.10%
- 568110: ~0.10%
- 569541: ~0.10%
- 570042: ~0.10%
- 571286: ~0.10%
- 571515: ~0.10%
- 571577: ~0.10%
- 572354: ~0.10%
- 573015: ~0.10%
- 573283: ~0.10%
- 578249: ~0.10%
- 578786: ~0.10%
- 580872: ~0.10%
- 581072: ~0.10%
- 581684: ~0.10%
- 582341: ~0.10%
- 583169: ~0.10%
- 583225: ~0.10%
- 583322: ~0.10%
- 583889: ~0.10%
- 584173: ~0.10%
- 585523: ~0.10%
- 585660: ~0.10%
- 587005: ~0.10%
- 588010: ~0.10%
- 588337: ~0.10%
- 590946: ~0.10%
- 593319: ~0.10%
- 594039: ~0.10%
- 594452: ~0.10%
- 595246: ~0.10%
- 597157: ~0.10%
- 597215: ~0.10%
- 597368: ~0.10%
- 597453: ~0.10%
- 598538: ~0.10%
- 598540: ~0.10%
- 601120: ~0.10%
- 604762: ~0.10%
- 606244: ~0.10%
- 606935: ~0.10%
- 609731: ~0.10%
- 611702: ~0.10%
- 613040: ~0.10%
- 614720: ~0.10%
- 615525: ~0.10%
- 616416: ~0.10%
- 618280: ~0.10%
- 618322: ~0.10%
- 619151: ~0.10%
- 619170: ~0.10%
- 622593: ~0.10%
- 622755: ~0.10%
- 623529: ~0.10%
- 625333: ~0.10%
- 625780: ~0.10%
- 626317: ~0.10%
- 626670: ~0.10%
- 628510: ~0.10%
- 630995: ~0.10%
- 631618: ~0.10%
- 632001: ~0.10%
- 634750: ~0.10%
- 635195: ~0.10%
- 636256: ~0.10%
- 636542: ~0.10%
- 637420: ~0.10%
- 641046: ~0.10%
- 643232: ~0.10%
- 643901: ~0.10%
- 644517: ~0.10%
- 645962: ~0.10%
- 647293: ~0.10%
- 647443: ~0.10%
- 648173: ~0.10%
- 649204: ~0.10%
- 649243: ~0.10%
- 650521: ~0.10%
- 650979: ~0.10%
- 652493: ~0.10%
- 654771: ~0.10%
- 656535: ~0.10%
- 658715: ~0.10%
- 659035: ~0.10%
- 659593: ~0.10%
- 660535: ~0.10%
- 662154: ~0.10%
- 662784: ~0.10%
- 663142: ~0.10%
- 664964: ~0.10%
- 665230: ~0.10%
- 666319: ~0.10%
- 666386: ~0.10%
- 666561: ~0.10%
- 668060: ~0.10%
- 668151: ~0.10%
- 669382: ~0.10%
- 670341: ~0.10%
- 673081: ~0.10%
- 673634: ~0.10%
- 673875: ~0.10%
- 673881: ~0.10%
- 674082: ~0.10%
- 674852: ~0.10%
- 675319: ~0.10%
- 675492: ~0.10%
- 676147: ~0.10%
- 676238: ~0.10%
- 676318: ~0.10%
- 677459: ~0.10%
- 677515: ~0.10%
- 679216: ~0.10%
- 679307: ~0.10%
- 680354: ~0.10%
- 681098: ~0.10%
- 681873: ~0.10%
- 683933: ~0.10%
- 684800: ~0.10%
- 685690: ~0.10%
- 685871: ~0.10%
- 686886: ~0.10%
- 689687: ~0.10%
- 689748: ~0.10%
- 693501: ~0.10%
- 694425: ~0.10%
- 694466: ~0.10%
- 695798: ~0.10%
- 698130: ~0.10%
- 700276: ~0.10%
- 702137: ~0.10%
- 703138: ~0.10%
- 704067: ~0.10%
- 704460: ~0.10%
- 706199: ~0.10%
- 706878: ~0.10%
- 707280: ~0.10%
- 710580: ~0.10%
- 710968: ~0.10%
- 713539: ~0.10%
- 713584: ~0.10%
- 714733: ~0.10%
- 718172: ~0.10%
- 719545: ~0.10%
- 720471: ~0.10%
- 720690: ~0.10%
- 723568: ~0.10%
- 724334: ~0.10%
- 724700: ~0.10%
- 727908: ~0.10%
- 730499: ~0.10%
- 730711: ~0.10%
- 733963: ~0.10%
- 734912: ~0.10%
- 736431: ~0.10%
- 738012: ~0.10%
- 742066: ~0.10%
- 745799: ~0.10%
- 746161: ~0.10%
- 748392: ~0.10%
- 748838: ~0.10%
- 749148: ~0.10%
- 751762: ~0.10%
- 752092: ~0.10%
- 752527: ~0.10%
- 753004: ~0.10%
- 755386: ~0.10%
- 756558: ~0.10%
- 756736: ~0.10%
- 758706: ~0.10%
- 759523: ~0.10%
- 760550: ~0.10%
- 762688: ~0.10%
- 762918: ~0.10%
- 765769: ~0.10%
- 766354: ~0.10%
- 768119: ~0.10%
- 769970: ~0.10%
- 773106: ~0.10%
- 775964: ~0.10%
- 776055: ~0.10%
- 777088: ~0.10%
- 777529: ~0.10%
- 779273: ~0.10%
- 781066: ~0.10%
- 781136: ~0.10%
- 782328: ~0.10%
- 783231: ~0.10%
- 784413: ~0.10%
- 785781: ~0.10%
- 786250: ~0.10%
- 786845: ~0.10%
- 788012: ~0.10%
- 792788: ~0.10%
- 793182: ~0.10%
- 794187: ~0.10%
- 796097: ~0.10%
- 796117: ~0.10%
- 797182: ~0.10%
- 798112: ~0.10%
- 798215: ~0.10%
- 802050: ~0.10%
- 802669: ~0.10%
- 804168: ~0.10%
- 804461: ~0.10%
- 805743: ~0.10%
- 806286: ~0.10%
- 808416: ~0.10%
- 808455: ~0.10%
- 810577: ~0.10%
- 811702: ~0.10%
- 811843: ~0.10%
- 812439: ~0.10%
- 815923: ~0.10%
- 816475: ~0.10%
- 818312: ~0.10%
- 818367: ~0.10%
- 818521: ~0.10%
- 819278: ~0.10%
- 819972: ~0.10%
- 820890: ~0.10%
- 821188: ~0.10%
- 821615: ~0.10%
- 822376: ~0.10%
- 823136: ~0.10%
- 823735: ~0.10%
- 829476: ~0.10%
- 830591: ~0.10%
- 832433: ~0.10%
- 832597: ~0.10%
- 835043: ~0.10%
- 835759: ~0.10%
- 837731: ~0.10%
- 837942: ~0.10%
- 839448: ~0.10%
- 840417: ~0.10%
- 843622: ~0.10%
- 844870: ~0.10%
- 846084: ~0.10%
- 846807: ~0.10%
- 847076: ~0.10%
- 847535: ~0.10%
- 847766: ~0.10%
- 847977: ~0.10%
- 848075: ~0.10%
- 848326: ~0.10%
- 852725: ~0.10%
- 853465: ~0.10%
- 856427: ~0.10%
- 857186: ~0.10%
- 858543: ~0.10%
- 858830: ~0.10%
- 861596: ~0.10%
- 863804: ~0.10%
- 865139: ~0.10%
- 866039: ~0.10%
- 866406: ~0.10%
- 867180: ~0.10%
- 868280: ~0.10%
- 872156: ~0.10%
- 872791: ~0.10%
- 872953: ~0.10%
- 872959: ~0.10%
- 875015: ~0.10%
- 876522: ~0.10%
- 878407: ~0.10%
- 878710: ~0.10%
- 878855: ~0.10%
- 880495: ~0.10%
- 884335: ~0.10%
- 884941: ~0.10%
- 885893: ~0.10%
- 886713: ~0.10%
- 887068: ~0.10%
- 887115: ~0.10%
- 887220: ~0.10%
- 887751: ~0.10%
- 888027: ~0.10%
- 888069: ~0.10%
- 888758: ~0.10%
- 890152: ~0.10%
- 891137: ~0.10%
- 891766: ~0.10%
- 891890: ~0.10%
- 892662: ~0.10%
- 892973: ~0.10%
- 893360: ~0.10%
- 893915: ~0.10%
- 893976: ~0.10%
- 894324: ~0.10%
- 895709: ~0.10%
- 897065: ~0.10%
- 898387: ~0.10%
- 898554: ~0.10%
- 899291: ~0.10%
- 899604: ~0.10%
- 900513: ~0.10%
- 900619: ~0.10%
- 901170: ~0.10%
- 903238: ~0.10%
- 904294: ~0.10%
- 904520: ~0.10%
- 904666: ~0.10%
- 904992: ~0.10%
- 907212: ~0.10%
- 908062: ~0.10%
- 908561: ~0.10%
- 909741: ~0.10%
- 911034: ~0.10%
- 911982: ~0.10%
- 913716: ~0.10%
- 914819: ~0.10%
- 915750: ~0.10%
- 915766: ~0.10%
- 916125: ~0.10%
- 916648: ~0.10%
- 917285: ~0.10%
- 918194: ~0.10%
- 920583: ~0.10%
- 924616: ~0.10%
- 926035: ~0.10%
- 927726: ~0.10%
- 929821: ~0.10%
- 930300: ~0.10%
- 930796: ~0.10%
- 931617: ~0.10%
- 932719: ~0.10%
- 933784: ~0.10%
- 934378: ~0.10%
- 935900: ~0.10%
- 936118: ~0.10%
- 936336: ~0.10%
- 937231: ~0.10%
- 938420: ~0.10%
- 939184: ~0.10%
- 939567: ~0.10%
- 941588: ~0.10%
- 944093: ~0.10%
- 944912: ~0.10%
- 945069: ~0.10%
- 945659: ~0.10%
- 946110: ~0.10%
- 950044: ~0.10%
- 954101: ~0.10%
- 954147: ~0.10%
- 958697: ~0.10%
- 959530: ~0.10%
- 961721: ~0.10%
- 963582: ~0.10%
- 964471: ~0.10%
- 965026: ~0.10%
- 966573: ~0.10%
- 967330: ~0.10%
- 968176: ~0.10%
- 968346: ~0.10%
- 970649: ~0.10%
- 970873: ~0.10%
- 971636: ~0.10%
- 971664: ~0.10%
- 972336: ~0.10%
- 973555: ~0.10%
- 974207: ~0.10%
- 976896: ~0.10%
- 981402: ~0.10%
- 983723: ~0.10%
- 984653: ~0.10%
- 985161: ~0.10%
- 987048: ~0.10%
- 987107: ~0.10%
- 987815: ~0.10%
- 993209: ~0.10%
- 994360: ~0.10%
- 994613: ~0.10%
- 1004305: ~0.10%
- 1004650: ~0.10%
- 1004849: ~0.10%
- 1005118: ~0.10%
- 1005614: ~0.10%
- 1005626: ~0.10%
- 1006835: ~0.10%
- 1009556: ~0.10%
- 1011008: ~0.10%
- 1014010: ~0.10%
- 1014030: ~0.10%
- 1016549: ~0.10%
- 1017016: ~0.10%
- 1017335: ~0.10%
- 1018386: ~0.10%
- 1020640: ~0.10%
- 1021041: ~0.10%
- 1021411: ~0.10%
- 1022998: ~0.10%
- 1025423: ~0.10%
- 1025767: ~0.10%
- 1026066: ~0.10%
- 1026434: ~0.10%
- 1027516: ~0.10%
- 1027703: ~0.10%
- 1028119: ~0.10%
- 1028642: ~0.10%
- 1031554: ~0.10%
- 1033639: ~0.10%
- 1033660: ~0.10%
- 1034832: ~0.10%
- 1035274: ~0.10%
- 1037432: ~0.10%
- 1037536: ~0.10%
- 1037759: ~0.10%
- 1039860: ~0.10%
- 1041131: ~0.10%
- 1041892: ~0.10%
- 1043066: ~0.10%
- 1044326: ~0.10%
- 1044905: ~0.10%
- 1047848: ~0.10%
- 1048062: ~0.10%
- 1048534: ~0.10%
- 1049477: ~0.10%
- 1049533: ~0.10%
- 1050531: ~0.10%
- 1050937: ~0.10%
- 1051747: ~0.10%
- 1052073: ~0.10%
- 1052617: ~0.10%
- 1054049: ~0.10%
- 1055142: ~0.10%
- 1056933: ~0.10%
- 1057358: ~0.10%
- 1057911: ~0.10%
- 1061411: ~0.10%
- 1062328: ~0.10%
- 1062485: ~0.10%
- 1062534: ~0.10%
- 1062794: ~0.10%
- 1063269: ~0.10%
- 1063467: ~0.10%
- 1064568: ~0.10%
- 1064868: ~0.10%
- 1065180: ~0.10%
- 1065481: ~0.10%
- 1067970: ~0.10%
- 1068479: ~0.10%
- 1070203: ~0.10%
- 1070708: ~0.10%
- 1071075: ~0.10%
- 1072038: ~0.10%
- 1072214: ~0.10%
- 1072525: ~0.10%
- 1073953: ~0.10%
- 1074885: ~0.10%
- 1075308: ~0.10%
- 1078872: ~0.10%
- 1079266: ~0.10%
- 1079736: ~0.10%
- 1080075: ~0.10%
- 1081716: ~0.10%
- 1137391: ~0.10%
- 1138530: ~0.10%
- 1139697: ~0.10%
- 1139738: ~0.10%
- 1140119: ~0.10%
- 1140869: ~0.10%
- 1141527: ~0.10%
- 1144693: ~0.10%
- 1145425: ~0.10%
- 1149162: ~0.10%
- 1149207: ~0.10%
- 1149985: ~0.10%
- 1150086: ~0.10%
- 1150731: ~0.10%
- 1151256: ~0.10%
- 1151403: ~0.10%
- 1152236: ~0.10%
- 1153693: ~0.10%
- 1154576: ~0.10%
- 1155859: ~0.10%
- 1156918: ~0.10%
- 1158007: ~0.10%
- 1158559: ~0.10%
- 1158952: ~0.10%
- 1159165: ~0.10%
- 1161242: ~0.10%
- 1163227: ~0.10%
- 1164078: ~0.10%
- 1165251: ~0.10%
- 1166023: ~0.10%
- 1166231: ~0.10%
- 1167002: ~0.10%
- 1168584: ~0.10%
- 1169844: ~0.10%
- 1170663: ~0.10%
- 1171580: ~0.10%
- 1172072: ~0.10%
- 1173371: ~0.10%
- 1173809: ~0.10%
- 1174049: ~0.10%
- 1175044: ~0.10%
- 1175745: ~0.10%
- 1176061: ~0.10%
- 1176414: ~0.10%
- 1177449: ~0.10%
- 1178311: ~0.10%
- 1179069: ~0.10%
- 1179450: ~0.10%
- 1181077: ~0.10%
- 1183293: ~0.10%
- 1184313: ~0.10%
- 1185090: ~0.10%
- 1185669: ~0.10%
- size: 32 elements
- size: 32 elements
- Samples:
query_id document_ids scores 237784
[6366584, 4034101, 2325374, 6914618, 6042146, ...]
[0.9999999991784339, 0.42233632827946693, 0.5956354295491569, 0.12644415907455164, 0.6636713730105909, ...]
904294
[448408, 8743975, 49600, 7339401, 2714261, ...]
[0.9999999991841937, 0.877629062381539, 0.8330146583389045, 0.3116634796692611, 0.4633524534142185, ...]
412214
[1006306, 4454048, 1949661, 4895656, 675880, ...]
[0.9999999994734676, 0.38790621123137803, 0.3747429039573546, 0.2990538871317199, 0.38420403106055895, ...]
- Loss:
pylate.losses.distillation.Distillation
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16learning_rate
: 3e-05num_train_epochs
: 1bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | NanoClimateFEVER_MaxSim_ndcg@10 | NanoDBPedia_MaxSim_ndcg@10 | NanoFEVER_MaxSim_ndcg@10 | NanoFiQA2018_MaxSim_ndcg@10 | NanoHotpotQA_MaxSim_ndcg@10 | NanoMSMARCO_MaxSim_ndcg@10 | NanoNFCorpus_MaxSim_ndcg@10 | NanoNQ_MaxSim_ndcg@10 | NanoQuoraRetrieval_MaxSim_ndcg@10 | NanoSCIDOCS_MaxSim_ndcg@10 | NanoArguAna_MaxSim_ndcg@10 | NanoSciFact_MaxSim_ndcg@10 | NanoTouche2020_MaxSim_ndcg@10 | NanoBEIR_mean_MaxSim_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0030 | 100 | 0.0383 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0060 | 200 | 0.0328 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0090 | 300 | 0.0319 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0120 | 400 | 0.0313 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0150 | 500 | 0.0294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0180 | 600 | 0.0265 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0210 | 700 | 0.026 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0240 | 800 | 0.0251 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0270 | 900 | 0.0242 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0300 | 1000 | 0.0245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0330 | 1100 | 0.0232 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0360 | 1200 | 0.0236 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0390 | 1300 | 0.0231 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0420 | 1400 | 0.0227 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0450 | 1500 | 0.0225 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0480 | 1600 | 0.0222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0510 | 1700 | 0.0218 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0540 | 1800 | 0.022 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0570 | 1900 | 0.0213 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0600 | 2000 | 0.0214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0630 | 2100 | 0.0214 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0660 | 2200 | 0.0209 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0690 | 2300 | 0.0204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0720 | 2400 | 0.0201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0750 | 2500 | 0.02 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0780 | 2600 | 0.0207 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0810 | 2700 | 0.0199 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0840 | 2800 | 0.0198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0870 | 2900 | 0.0196 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0900 | 3000 | 0.0197 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0930 | 3100 | 0.0194 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0960 | 3200 | 0.0193 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0990 | 3300 | 0.019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1020 | 3400 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1050 | 3500 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1080 | 3600 | 0.0187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1110 | 3700 | 0.0183 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1140 | 3800 | 0.0185 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1170 | 3900 | 0.0186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1200 | 4000 | 0.0188 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1230 | 4100 | 0.019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1260 | 4200 | 0.018 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1290 | 4300 | 0.0183 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1320 | 4400 | 0.0178 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1350 | 4500 | 0.018 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1380 | 4600 | 0.0175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1410 | 4700 | 0.0172 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1440 | 4800 | 0.0174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1470 | 4900 | 0.0176 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1500 | 5000 | 0.017 | 0.2687 | 0.5353 | 0.8792 | 0.4640 | 0.8518 | 0.6460 | 0.3198 | 0.6059 | 0.9229 | 0.3192 | 0.3772 | 0.7166 | 0.5900 | 0.5767 |
0.1530 | 5100 | 0.0173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1560 | 5200 | 0.0175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1590 | 5300 | 0.0173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1620 | 5400 | 0.0168 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1650 | 5500 | 0.0164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1680 | 5600 | 0.0171 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1710 | 5700 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1740 | 5800 | 0.0166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1770 | 5900 | 0.0169 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1801 | 6000 | 0.0166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1831 | 6100 | 0.0164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1861 | 6200 | 0.0165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1891 | 6300 | 0.0162 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1921 | 6400 | 0.0161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1951 | 6500 | 0.0163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1981 | 6600 | 0.0161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2011 | 6700 | 0.0161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2041 | 6800 | 0.0159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2071 | 6900 | 0.0166 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2101 | 7000 | 0.0158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2131 | 7100 | 0.0161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2161 | 7200 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2191 | 7300 | 0.0151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2221 | 7400 | 0.0155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2251 | 7500 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2281 | 7600 | 0.0157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2311 | 7700 | 0.0154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2341 | 7800 | 0.0153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2371 | 7900 | 0.0155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2401 | 8000 | 0.015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2431 | 8100 | 0.0155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2461 | 8200 | 0.0153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2491 | 8300 | 0.015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2521 | 8400 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2551 | 8500 | 0.0151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2581 | 8600 | 0.015 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2611 | 8700 | 0.0151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2641 | 8800 | 0.0152 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2671 | 8900 | 0.0152 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2701 | 9000 | 0.0149 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2731 | 9100 | 0.0145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2761 | 9200 | 0.0145 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2791 | 9300 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2821 | 9400 | 0.0151 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2851 | 9500 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2881 | 9600 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2911 | 9700 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2941 | 9800 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2971 | 9900 | 0.0146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3001 | 10000 | 0.0144 | 0.2775 | 0.5458 | 0.8872 | 0.4447 | 0.8686 | 0.6438 | 0.3179 | 0.6183 | 0.9151 | 0.3025 | 0.4000 | 0.7288 | 0.5733 | 0.5787 |
0.3031 | 10100 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3061 | 10200 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3091 | 10300 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3121 | 10400 | 0.0146 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3151 | 10500 | 0.0143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3181 | 10600 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3211 | 10700 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3241 | 10800 | 0.0147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3271 | 10900 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3301 | 11000 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3331 | 11100 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3361 | 11200 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3391 | 11300 | 0.0143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3421 | 11400 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3451 | 11500 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3481 | 11600 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3511 | 11700 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3541 | 11800 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3571 | 11900 | 0.0142 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3601 | 12000 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3631 | 12100 | 0.0139 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3661 | 12200 | 0.0144 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3691 | 12300 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3721 | 12400 | 0.0141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3751 | 12500 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3781 | 12600 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3811 | 12700 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3841 | 12800 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3871 | 12900 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3901 | 13000 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3931 | 13100 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3961 | 13200 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3991 | 13300 | 0.0137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4021 | 13400 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4051 | 13500 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4081 | 13600 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4111 | 13700 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4141 | 13800 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4171 | 13900 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4201 | 14000 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4231 | 14100 | 0.0136 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4261 | 14200 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4291 | 14300 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4321 | 14400 | 0.0138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4351 | 14500 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4381 | 14600 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4411 | 14700 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4441 | 14800 | 0.0134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4471 | 14900 | 0.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4501 | 15000 | 0.0136 | 0.2846 | 0.5781 | 0.8899 | 0.4652 | 0.8629 | 0.6491 | 0.3255 | 0.6303 | 0.9427 | 0.3168 | 0.4224 | 0.7354 | 0.5816 | 0.5911 |
0.4531 | 15100 | 0.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4561 | 15200 | 0.0131 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4591 | 15300 | 0.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4621 | 15400 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4651 | 15500 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4681 | 15600 | 0.0133 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4711 | 15700 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4741 | 15800 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4771 | 15900 | 0.0132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4801 | 16000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4831 | 16100 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4861 | 16200 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4891 | 16300 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4921 | 16400 | 0.0135 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4951 | 16500 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4981 | 16600 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5011 | 16700 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5041 | 16800 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5071 | 16900 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5101 | 17000 | 0.0129 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5131 | 17100 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5161 | 17200 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5191 | 17300 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5221 | 17400 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5251 | 17500 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5281 | 17600 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5311 | 17700 | 0.013 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5341 | 17800 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5372 | 17900 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5402 | 18000 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5432 | 18100 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5462 | 18200 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5492 | 18300 | 0.0128 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5522 | 18400 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5552 | 18500 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5582 | 18600 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5612 | 18700 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5642 | 18800 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5672 | 18900 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5702 | 19000 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5732 | 19100 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5762 | 19200 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5792 | 19300 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5822 | 19400 | 0.0126 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5852 | 19500 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5882 | 19600 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5912 | 19700 | 0.0127 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5942 | 19800 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5972 | 19900 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6002 | 20000 | 0.0124 | 0.2803 | 0.5772 | 0.8907 | 0.4668 | 0.8676 | 0.6476 | 0.3364 | 0.6633 | 0.9129 | 0.3240 | 0.4412 | 0.7460 | 0.5781 | 0.5948 |
0.6032 | 20100 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6062 | 20200 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6092 | 20300 | 0.0125 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6122 | 20400 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6152 | 20500 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6182 | 20600 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6212 | 20700 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6242 | 20800 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6272 | 20900 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6302 | 21000 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6332 | 21100 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6362 | 21200 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6392 | 21300 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6422 | 21400 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6452 | 21500 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6482 | 21600 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6512 | 21700 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6542 | 21800 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6572 | 21900 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6602 | 22000 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6632 | 22100 | 0.0124 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6662 | 22200 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6692 | 22300 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6722 | 22400 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6752 | 22500 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6782 | 22600 | 0.0116 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6812 | 22700 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6842 | 22800 | 0.0122 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6872 | 22900 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6902 | 23000 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6932 | 23100 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6962 | 23200 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6992 | 23300 | 0.012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7022 | 23400 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7052 | 23500 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7082 | 23600 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7112 | 23700 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7142 | 23800 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7172 | 23900 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7202 | 24000 | 0.0123 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7232 | 24100 | 0.0121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7262 | 24200 | 0.0115 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7292 | 24300 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7322 | 24400 | 0.0116 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7352 | 24500 | 0.0116 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7382 | 24600 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7412 | 24700 | 0.0119 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7442 | 24800 | 0.0117 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7472 | 24900 | 0.0118 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7502 | 25000 | 0.012 | 0.2905 | 0.5880 | 0.9048 | 0.4640 | 0.8575 | 0.6645 | 0.3255 | 0.6545 | 0.9043 | 0.3302 | 0.4645 | 0.7485 | 0.5655 | 0.5971 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.0.2
- PyLate: 1.2.0
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084"
}
PyLate
@misc{PyLate,
title={PyLate: Flexible Training and Retrieval for Late Interaction Models},
author={Chaffin, Antoine and Sourty, Raphaël},
url={https://github.com/lightonai/pylate},
year={2024}
}