Giga-Embeddings-instruct
- Base Decoder-only LLM: GigaChat-3b
- Pooling Type: Latent-Attention
- Embedding Dimension: 2048
Использование
Ниже приведен пример кодирования запросов и текстов.
Transformers
import os
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel
# Each query needs to be accompanied by an corresponding instruction describing the task.
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
query_prefix = task_name_to_instruct["example"] + "\nquestion: "
queries = [
'are judo throws allowed in wrestling?',
'how to become a radiology technician in michigan?'
]
# No instruction needed for retrieval passages
passage_prefix = ""
passages = [
"Since you're reading this, you are probably someone from a judo background or someone who is just wondering how judo techniques can be applied under wrestling rules. So without further ado, let's get to the question. Are Judo throws allowed in wrestling? Yes, judo throws are allowed in freestyle and folkstyle wrestling. You only need to be careful to follow the slam rules when executing judo throws. In wrestling, a slam is lifting and returning an opponent to the mat with unnecessary force.",
"Below are the basic steps to becoming a radiologic technologist in Michigan:Earn a high school diploma. As with most careers in health care, a high school education is the first step to finding entry-level employment. Taking classes in math and science, such as anatomy, biology, chemistry, physiology, and physics, can help prepare students for their college studies and future careers.Earn an associate degree. Entry-level radiologic positions typically require at least an Associate of Applied Science. Before enrolling in one of these degree programs, students should make sure it has been properly accredited by the Joint Review Committee on Education in Radiologic Technology (JRCERT).Get licensed or certified in the state of Michigan."
]
# load model with tokenizer
model = AutoModel.from_pretrained('ai-sage/Giga-Embeddings-instruct', trust_remote_code=True)
# get the embeddings
query_embeddings = model.encode(queries, instruction=query_prefix)
passage_embeddings = model.encode(passages, instruction=passage_prefix)
# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)
scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())
Поддерживаемые языки
Эта модель инициализирована pretrain моделью GigaChat и дополнительно обучена на смеси английских и русских данных. Однако, поскольку pretrain GigaChat'a делался в основном на русскоязычных данных, мы рекомендуем использовать эту модель только для русского языка.
FAQ
- Нужно ли добавлять инструкции к запросу?
Да, именно так модель обучалась, иначе вы увидите снижение производительности. Определение задачи должно быть инструкцией в одном предложении, которая описывает задачу. Это способ настройки текстовых эмбеддингов для разных сценариев с помощью инструкций на естественном языке.
С другой стороны, добавлять инструкции на сторону документа не требуется.
- Почему мои воспроизведённые результаты немного отличаются от указанных в карточке модели?
Разные версии библиотек transformers и pytorch могут вызывать незначительные, но ненулевые различия в производительности.
Ограничения
Использование этой модели для входных данных, содержащих более 4096 токенов, невозможно.
- Downloads last month
- 10,279
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported94.535
- ap on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported62.423
- ap_weighted on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported62.423
- f1 on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported87.131
- f1_weighted on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported94.856
- main_score on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported94.535
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported90.313
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported63.424
- ap_weighted on MTEB AmazonCounterfactualClassification (en)test set self-reported63.424
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported85.542