3b-september-2025 upload
Browse files- 1_Pooling/config.json +8 -8
- README.md +102 -99
- config.json +212 -90
- config_sentence_transformers.json +8 -4
- modeling_gigarembed.py +2 -1
- sentence_bert_config.json +2 -2
- tokenizer_config.json +1 -1
1_Pooling/config.json
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 2048,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
}
|
README.md
CHANGED
|
@@ -1,138 +1,141 @@
|
|
| 1 |
---
|
| 2 |
-
license: mit
|
| 3 |
-
language:
|
| 4 |
-
- ru
|
| 5 |
-
- en
|
| 6 |
-
pipeline_tag: feature-extraction
|
| 7 |
tags:
|
| 8 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
---
|
| 10 |
-
## Giga-Embeddings-instruct
|
| 11 |
-
- Base Decoder-only LLM: GigaChat-3b
|
| 12 |
-
- Pooling Type: Latent-Attention
|
| 13 |
-
- Embedding Dimension: 2048
|
| 14 |
|
| 15 |
-
|
| 16 |
|
| 17 |
-
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
###
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
import torch.nn.functional as F
|
| 31 |
-
from transformers import AutoTokenizer, AutoModel
|
| 32 |
-
|
| 33 |
-
# Each query needs to be accompanied by an corresponding instruction describing the task.
|
| 34 |
-
task_name_to_instruct = {"example": "Given a question, retrieve passages that answer the question",}
|
| 35 |
-
|
| 36 |
-
query_prefix = task_name_to_instruct["example"] + "\nquestion: "
|
| 37 |
-
queries = [
|
| 38 |
-
'are judo throws allowed in wrestling?',
|
| 39 |
-
'how to become a radiology technician in michigan?'
|
| 40 |
-
]
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
model = AutoModel.from_pretrained('ai-sage/Giga-Embeddings-instruct', trust_remote_code=True)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
query_embeddings = model.encode(queries, instruction=query_prefix)
|
| 54 |
-
passage_embeddings = model.encode(passages, instruction=passage_prefix)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
print(scores.tolist())
|
| 58 |
-
```
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
|
|
|
| 62 |
```python
|
| 63 |
-
import
|
| 64 |
-
|
| 65 |
-
from
|
| 66 |
-
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
| 83 |
-
query_embeddings = embeddings.embed_query("Hello world!")
|
| 84 |
-
print(f"Your embeddings: {query_embeddings[0:20]}...")
|
| 85 |
-
print(f"Vector size: {len(query_embeddings)}")
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
documents_embeddings = embeddings.embed_documents(documents)
|
| 90 |
-
print(f"Vector size: {len(documents_embeddings)} x {len(documents_embeddings[0])}")
|
| 91 |
-
```
|
| 92 |
|
| 93 |
-
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
|
| 101 |
-
|
| 102 |
-
-
|
| 103 |
-
- `"Given a text, retrieve semantically similar text \ntext: {query}"`
|
| 104 |
-
- `"Дано предложение, необходимо найти его парафраз \nпредложение: {query}"`
|
| 105 |
-
- `"Классифицируй отзыв на товар как положительный, отрицательный или нейтральный \nотзыв: {query}"`
|
| 106 |
-
- `"Классифицируй чувствительную тему по запросу \nзапрос: {query}"`
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
- `'Given the question, find a paragraph with the answer \nquestion: {query}'`
|
| 116 |
|
| 117 |
-
|
|
|
|
| 118 |
|
| 119 |
-
|
|
|
|
| 120 |
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
-
|
| 126 |
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
|
|
|
| 130 |
|
| 131 |
-
|
|
|
|
| 132 |
|
| 133 |
-
|
|
|
|
| 134 |
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
|
|
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- dense
|
| 7 |
+
pipeline_tag: sentence-similarity
|
| 8 |
+
library_name: sentence-transformers
|
| 9 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# SentenceTransformer
|
| 12 |
|
| 13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 2048-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 14 |
|
| 15 |
+
## Model Details
|
| 16 |
|
| 17 |
+
### Model Description
|
| 18 |
+
- **Model Type:** Sentence Transformer
|
| 19 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
| 20 |
+
- **Maximum Sequence Length:** None tokens
|
| 21 |
+
- **Output Dimensionality:** 2048 dimensions
|
| 22 |
+
- **Similarity Function:** Cosine Similarity
|
| 23 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 24 |
+
<!-- - **Language:** Unknown -->
|
| 25 |
+
<!-- - **License:** Unknown -->
|
| 26 |
|
| 27 |
+
### Model Sources
|
| 28 |
|
| 29 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 30 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 31 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
### Full Model Architecture
|
| 34 |
+
|
| 35 |
+
```
|
| 36 |
+
SentenceTransformer(
|
| 37 |
+
(0): Transformer({'max_seq_length': None, 'do_lower_case': False, 'architecture': 'GigarEmbedModel'})
|
| 38 |
+
(1): Pooling({'word_embedding_dimension': 2048, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 39 |
+
)
|
| 40 |
+
```
|
| 41 |
|
| 42 |
+
## Usage
|
|
|
|
| 43 |
|
| 44 |
+
### Direct Usage (Sentence Transformers)
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
First install the Sentence Transformers library:
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
```bash
|
| 49 |
+
pip install -U sentence-transformers
|
| 50 |
+
```
|
| 51 |
|
| 52 |
+
Then you can load this model and run inference.
|
| 53 |
```python
|
| 54 |
+
from sentence_transformers import SentenceTransformer
|
| 55 |
+
|
| 56 |
+
# Download from the 🤗 Hub
|
| 57 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 58 |
+
# Run inference
|
| 59 |
+
sentences = [
|
| 60 |
+
'The weather is lovely today.',
|
| 61 |
+
"It's so sunny outside!",
|
| 62 |
+
'He drove to the stadium.',
|
| 63 |
+
]
|
| 64 |
+
embeddings = model.encode(sentences)
|
| 65 |
+
print(embeddings.shape)
|
| 66 |
+
# [3, 2048]
|
| 67 |
+
|
| 68 |
+
# Get the similarity scores for the embeddings
|
| 69 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 70 |
+
print(similarities.shape)
|
| 71 |
+
# [3, 3]
|
| 72 |
+
```
|
| 73 |
|
| 74 |
+
<!--
|
| 75 |
+
### Direct Usage (Transformers)
|
| 76 |
|
| 77 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
+
</details>
|
| 80 |
+
-->
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
+
<!--
|
| 83 |
+
### Downstream Usage (Sentence Transformers)
|
| 84 |
|
| 85 |
+
You can finetune this model on your own dataset.
|
| 86 |
|
| 87 |
+
<details><summary>Click to expand</summary>
|
| 88 |
|
| 89 |
+
</details>
|
| 90 |
+
-->
|
| 91 |
|
| 92 |
+
<!--
|
| 93 |
+
### Out-of-Scope Use
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 96 |
+
-->
|
| 97 |
|
| 98 |
+
<!--
|
| 99 |
+
## Bias, Risks and Limitations
|
| 100 |
|
| 101 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 102 |
+
-->
|
|
|
|
| 103 |
|
| 104 |
+
<!--
|
| 105 |
+
### Recommendations
|
| 106 |
|
| 107 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 108 |
+
-->
|
| 109 |
|
| 110 |
+
## Training Details
|
| 111 |
|
| 112 |
+
### Framework Versions
|
| 113 |
+
- Python: 3.10.12
|
| 114 |
+
- Sentence Transformers: 5.1.1
|
| 115 |
+
- Transformers: 4.51.0
|
| 116 |
+
- PyTorch: 2.5.1+cu124
|
| 117 |
+
- Accelerate: 1.2.1
|
| 118 |
+
- Datasets: 2.21.0
|
| 119 |
+
- Tokenizers: 0.21.4
|
| 120 |
|
| 121 |
+
## Citation
|
| 122 |
|
| 123 |
+
### BibTeX
|
| 124 |
|
| 125 |
+
<!--
|
| 126 |
+
## Glossary
|
| 127 |
|
| 128 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 129 |
+
-->
|
| 130 |
|
| 131 |
+
<!--
|
| 132 |
+
## Model Card Authors
|
| 133 |
|
| 134 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 135 |
+
-->
|
| 136 |
|
| 137 |
+
<!--
|
| 138 |
+
## Model Card Contact
|
| 139 |
|
| 140 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 141 |
+
-->
|
config.json
CHANGED
|
@@ -1,96 +1,218 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
},
|
| 13 |
-
"
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
"hidden_dim": 2048,
|
| 19 |
-
"latent_dim": 2048,
|
| 20 |
-
"mult": 4
|
| 21 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
"hidden_size": 2048,
|
| 23 |
-
"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
"kv_lora_rank": 1024,
|
| 53 |
-
"q_lora_rank": 0,
|
| 54 |
-
"qk_nope_head_dim": 64,
|
| 55 |
-
"qk_rope_head_dim": 64,
|
| 56 |
-
"v_head_dim": 128
|
| 57 |
-
},
|
| 58 |
-
"mlp_bias": false,
|
| 59 |
-
"model_type": "gigar",
|
| 60 |
-
"mtp_loss_weight": 0.1,
|
| 61 |
-
"mtp_predictor_num": 1,
|
| 62 |
-
"norm_type": "LlamaRMSNorm",
|
| 63 |
-
"num_attention_heads": 16,
|
| 64 |
-
"num_hidden_layers": 36,
|
| 65 |
-
"num_key_value_heads": 16,
|
| 66 |
-
"pad_token_id": 2,
|
| 67 |
-
"parallel_embedding_type": "EmbeddingParallelEmbedding",
|
| 68 |
-
"pretraining_tp": 1,
|
| 69 |
-
"q_lora_rank": 0,
|
| 70 |
-
"qk_nope_head_dim": 64,
|
| 71 |
-
"qk_rope_head_dim": 64,
|
| 72 |
-
"rms_norm_eps": 1e-06,
|
| 73 |
-
"rope_scaling": null,
|
| 74 |
-
"rope_theta": 100000.0,
|
| 75 |
-
"skip_init_tp_modules": true,
|
| 76 |
-
"sliding_window": null,
|
| 77 |
-
"sp_split_type": "equal",
|
| 78 |
-
"tie_word_embeddings": false,
|
| 79 |
-
"tp_group": null,
|
| 80 |
-
"tp_size": 1,
|
| 81 |
-
"unk_token_id": 0,
|
| 82 |
-
"use_cache": false,
|
| 83 |
-
"use_cache_force": false,
|
| 84 |
-
"use_custom_rotary_kernel": false,
|
| 85 |
-
"use_liger": false,
|
| 86 |
-
"use_mrope": false,
|
| 87 |
-
"use_mtp": true,
|
| 88 |
-
"use_sliding_window": false,
|
| 89 |
-
"v_head_dim": 128,
|
| 90 |
-
"varlen_input": true,
|
| 91 |
-
"vocab_size": 128256,
|
| 92 |
-
"z_loss_eps": 5e-05
|
| 93 |
},
|
| 94 |
-
"
|
| 95 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_non_freeze_layers_idxs": null,
|
| 3 |
+
"activation_checkpoint_layers_num": null,
|
| 4 |
+
"add_eos": true,
|
| 5 |
+
"add_pad_token": true,
|
| 6 |
+
"apply_torch_compile_to_projections": true,
|
| 7 |
+
"architectures": [
|
| 8 |
+
"GigarEmbedModel"
|
| 9 |
+
],
|
| 10 |
+
"auto_map": {
|
| 11 |
+
"AutoConfig": "configuration_gigarembed.GigarEmbedConfig",
|
| 12 |
+
"AutoModel": "modeling_gigarembed.GigarEmbedModel"
|
| 13 |
+
},
|
| 14 |
+
"hidden_size": 2048,
|
| 15 |
+
"is_mask_instruction": true,
|
| 16 |
+
"latent_attention_config": {
|
| 17 |
+
"_attn_implementation_autoset": false,
|
| 18 |
+
"_name_or_path": "",
|
| 19 |
+
"add_cross_attention": false,
|
| 20 |
+
"architectures": null,
|
| 21 |
+
"bad_words_ids": null,
|
| 22 |
+
"begin_suppress_tokens": null,
|
| 23 |
+
"bos_token_id": null,
|
| 24 |
+
"chunk_size_feed_forward": 0,
|
| 25 |
+
"cross_attention_hidden_size": null,
|
| 26 |
+
"cross_dim_head": 2048,
|
| 27 |
+
"decoder_start_token_id": null,
|
| 28 |
+
"diversity_penalty": 0.0,
|
| 29 |
+
"do_sample": false,
|
| 30 |
+
"early_stopping": false,
|
| 31 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 32 |
+
"eos_token_id": null,
|
| 33 |
+
"exponential_decay_length_penalty": null,
|
| 34 |
+
"finetuning_task": null,
|
| 35 |
+
"forced_bos_token_id": null,
|
| 36 |
+
"forced_eos_token_id": null,
|
| 37 |
+
"hidden_dim": 2048,
|
| 38 |
+
"id2label": {
|
| 39 |
+
"0": "LABEL_0",
|
| 40 |
+
"1": "LABEL_1"
|
| 41 |
},
|
| 42 |
+
"is_decoder": false,
|
| 43 |
+
"is_encoder_decoder": false,
|
| 44 |
+
"label2id": {
|
| 45 |
+
"LABEL_0": 0,
|
| 46 |
+
"LABEL_1": 1
|
|
|
|
|
|
|
|
|
|
| 47 |
},
|
| 48 |
+
"latent_dim": 2048,
|
| 49 |
+
"length_penalty": 1.0,
|
| 50 |
+
"max_length": 20,
|
| 51 |
+
"min_length": 0,
|
| 52 |
+
"model_type": "latent_attention",
|
| 53 |
+
"mult": 4,
|
| 54 |
+
"no_repeat_ngram_size": 0,
|
| 55 |
+
"num_beam_groups": 1,
|
| 56 |
+
"num_beams": 1,
|
| 57 |
+
"num_cross_heads": 8,
|
| 58 |
+
"num_latents_value": 512,
|
| 59 |
+
"num_return_sequences": 1,
|
| 60 |
+
"output_attentions": false,
|
| 61 |
+
"output_hidden_states": false,
|
| 62 |
+
"output_scores": false,
|
| 63 |
+
"pad_token_id": null,
|
| 64 |
+
"prefix": null,
|
| 65 |
+
"problem_type": null,
|
| 66 |
+
"pruned_heads": {},
|
| 67 |
+
"remove_invalid_values": false,
|
| 68 |
+
"repetition_penalty": 1.0,
|
| 69 |
+
"return_dict": true,
|
| 70 |
+
"return_dict_in_generate": false,
|
| 71 |
+
"sep_token_id": null,
|
| 72 |
+
"suppress_tokens": null,
|
| 73 |
+
"task_specific_params": null,
|
| 74 |
+
"temperature": 1.0,
|
| 75 |
+
"tf_legacy_loss": false,
|
| 76 |
+
"tie_encoder_decoder": false,
|
| 77 |
+
"tie_word_embeddings": true,
|
| 78 |
+
"tokenizer_class": null,
|
| 79 |
+
"top_k": 50,
|
| 80 |
+
"top_p": 1.0,
|
| 81 |
+
"torch_dtype": null,
|
| 82 |
+
"torchscript": false,
|
| 83 |
+
"typical_p": 1.0,
|
| 84 |
+
"use_bfloat16": false
|
| 85 |
+
},
|
| 86 |
+
"mask_type": "b",
|
| 87 |
+
"model_type": "gigarembed",
|
| 88 |
+
"padding_side": "right",
|
| 89 |
+
"text_config": {
|
| 90 |
+
"_attn_implementation_autoset": false,
|
| 91 |
+
"_name_or_path": "ai-sage/Giga-Embeddings-instruct",
|
| 92 |
+
"add_cross_attention": false,
|
| 93 |
+
"apply_qk_norm": true,
|
| 94 |
+
"architectures": null,
|
| 95 |
+
"attention_bias": false,
|
| 96 |
+
"attention_dropout": 0.0,
|
| 97 |
+
"attention_hidden_size": null,
|
| 98 |
+
"attention_type": "LlamaLatentAttention",
|
| 99 |
+
"bad_words_ids": null,
|
| 100 |
+
"begin_suppress_tokens": null,
|
| 101 |
+
"bos_token_id": 1,
|
| 102 |
+
"chunk_size_feed_forward": 0,
|
| 103 |
+
"cross_attention_hidden_size": null,
|
| 104 |
+
"decoder_start_token_id": null,
|
| 105 |
+
"delete_logits": true,
|
| 106 |
+
"deterministic_attention": false,
|
| 107 |
+
"diversity_penalty": 0.0,
|
| 108 |
+
"do_sample": false,
|
| 109 |
+
"early_stopping": false,
|
| 110 |
+
"enable_async_tp": false,
|
| 111 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 112 |
+
"eos_token_id": 2,
|
| 113 |
+
"exponential_decay_length_penalty": null,
|
| 114 |
+
"finetuning_task": null,
|
| 115 |
+
"forced_bos_token_id": null,
|
| 116 |
+
"forced_eos_token_id": null,
|
| 117 |
+
"freeze_non_embed": false,
|
| 118 |
+
"fused_mlp": true,
|
| 119 |
+
"fused_mlp_checkpoint_lvl": 3,
|
| 120 |
+
"head_dim": 64,
|
| 121 |
+
"hidden_act": "silu",
|
| 122 |
"hidden_size": 2048,
|
| 123 |
+
"id2label": {
|
| 124 |
+
"0": "LABEL_0",
|
| 125 |
+
"1": "LABEL_1"
|
| 126 |
+
},
|
| 127 |
+
"ignore_index": -100,
|
| 128 |
+
"init_device": "meta",
|
| 129 |
+
"initializer_range": 0.02,
|
| 130 |
+
"intermediate_size": 11008,
|
| 131 |
+
"is_decoder": false,
|
| 132 |
+
"is_encoder_decoder": false,
|
| 133 |
+
"kv_lora_rank": 1024,
|
| 134 |
+
"label2id": {
|
| 135 |
+
"LABEL_0": 0,
|
| 136 |
+
"LABEL_1": 1
|
| 137 |
+
},
|
| 138 |
+
"length_penalty": 1.0,
|
| 139 |
+
"lora_alpha": null,
|
| 140 |
+
"lora_r": null,
|
| 141 |
+
"loss_inplace_backward": false,
|
| 142 |
+
"max_length": 20,
|
| 143 |
+
"max_position_embeddings": 4096,
|
| 144 |
+
"max_window_layers": 36,
|
| 145 |
+
"min_length": 0,
|
| 146 |
+
"mla_config": {
|
| 147 |
+
"kv_lora_rank": 1024,
|
| 148 |
+
"q_lora_rank": 0,
|
| 149 |
+
"qk_nope_head_dim": 64,
|
| 150 |
+
"qk_rope_head_dim": 64,
|
| 151 |
+
"v_head_dim": 128
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
},
|
| 153 |
+
"mlp_bias": false,
|
| 154 |
+
"model_type": "gigar",
|
| 155 |
+
"mtp_loss_weight": 0.1,
|
| 156 |
+
"mtp_predictor_num": 1,
|
| 157 |
+
"no_repeat_ngram_size": 0,
|
| 158 |
+
"norm_type": "LlamaRMSNorm",
|
| 159 |
+
"num_attention_heads": 16,
|
| 160 |
+
"num_beam_groups": 1,
|
| 161 |
+
"num_beams": 1,
|
| 162 |
+
"num_hidden_layers": 36,
|
| 163 |
+
"num_key_value_heads": 16,
|
| 164 |
+
"num_return_sequences": 1,
|
| 165 |
+
"output_attentions": false,
|
| 166 |
+
"output_hidden_states": false,
|
| 167 |
+
"output_scores": false,
|
| 168 |
+
"pad_token_id": 2,
|
| 169 |
+
"parallel_embedding_type": "EmbeddingParallelEmbedding",
|
| 170 |
+
"prefix": null,
|
| 171 |
+
"pretraining_tp": 1,
|
| 172 |
+
"problem_type": null,
|
| 173 |
+
"pruned_heads": {},
|
| 174 |
+
"q_lora_rank": 0,
|
| 175 |
+
"qk_nope_head_dim": 64,
|
| 176 |
+
"qk_rope_head_dim": 64,
|
| 177 |
+
"remove_invalid_values": false,
|
| 178 |
+
"repetition_penalty": 1.0,
|
| 179 |
+
"return_dict": true,
|
| 180 |
+
"return_dict_in_generate": false,
|
| 181 |
+
"rms_norm_eps": 1e-06,
|
| 182 |
+
"rope_scaling": null,
|
| 183 |
+
"rope_theta": 100000.0,
|
| 184 |
+
"sep_token_id": null,
|
| 185 |
+
"skip_init_tp_modules": true,
|
| 186 |
+
"sliding_window": null,
|
| 187 |
+
"sp_split_type": "equal",
|
| 188 |
+
"suppress_tokens": null,
|
| 189 |
+
"task_specific_params": null,
|
| 190 |
+
"temperature": 1.0,
|
| 191 |
+
"tf_legacy_loss": false,
|
| 192 |
+
"tie_encoder_decoder": false,
|
| 193 |
+
"tie_word_embeddings": false,
|
| 194 |
+
"tokenizer_class": null,
|
| 195 |
+
"top_k": 50,
|
| 196 |
+
"top_p": 1.0,
|
| 197 |
+
"torch_dtype": null,
|
| 198 |
+
"torchscript": false,
|
| 199 |
+
"tp_group": null,
|
| 200 |
+
"tp_size": 1,
|
| 201 |
+
"typical_p": 1.0,
|
| 202 |
+
"unk_token_id": 0,
|
| 203 |
+
"use_bfloat16": false,
|
| 204 |
+
"use_cache": false,
|
| 205 |
+
"use_cache_force": false,
|
| 206 |
+
"use_custom_rotary_kernel": false,
|
| 207 |
+
"use_liger": false,
|
| 208 |
+
"use_mrope": false,
|
| 209 |
+
"use_mtp": true,
|
| 210 |
+
"use_sliding_window": false,
|
| 211 |
+
"v_head_dim": 128,
|
| 212 |
+
"varlen_input": true,
|
| 213 |
+
"vocab_size": 128256,
|
| 214 |
+
"z_loss_eps": 5e-05
|
| 215 |
+
},
|
| 216 |
+
"torch_dtype": "float32",
|
| 217 |
+
"transformers_version": "4.51.0"
|
| 218 |
}
|
config_sentence_transformers.json
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
{
|
|
|
|
| 2 |
"__version__": {
|
| 3 |
-
"sentence_transformers": "
|
| 4 |
-
"transformers": "4.
|
| 5 |
-
"pytorch": "2.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
},
|
| 7 |
-
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
| 9 |
"similarity_fn_name": "cosine"
|
| 10 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.1",
|
| 5 |
+
"transformers": "4.51.0",
|
| 6 |
+
"pytorch": "2.5.1+cu124"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
},
|
|
|
|
| 12 |
"default_prompt_name": null,
|
| 13 |
"similarity_fn_name": "cosine"
|
| 14 |
}
|
modeling_gigarembed.py
CHANGED
|
@@ -1135,7 +1135,8 @@ class GigarEmbedModel(PreTrainedModel):
|
|
| 1135 |
if return_embeddings:
|
| 1136 |
return self.mean_pool(last_hidden, attention_mask)
|
| 1137 |
|
| 1138 |
-
return last_hidden
|
|
|
|
| 1139 |
|
| 1140 |
def mean_pool(self, last_hidden: torch.Tensor, attention_mask: torch.Tensor):
|
| 1141 |
last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
|
|
|
| 1135 |
if return_embeddings:
|
| 1136 |
return self.mean_pool(last_hidden, attention_mask)
|
| 1137 |
|
| 1138 |
+
# return last_hidden
|
| 1139 |
+
return BaseModelOutputWithPast(last_hidden_state=last_hidden)
|
| 1140 |
|
| 1141 |
def mean_pool(self, last_hidden: torch.Tensor, attention_mask: torch.Tensor):
|
| 1142 |
last_hidden = last_hidden.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"max_seq_length": null,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
}
|
tokenizer_config.json
CHANGED
|
@@ -2086,7 +2086,7 @@
|
|
| 2086 |
"padding_side": "right",
|
| 2087 |
"sep_token": "<unk>",
|
| 2088 |
"stride": 0,
|
| 2089 |
-
"tokenizer_class": "
|
| 2090 |
"truncation_side": "right",
|
| 2091 |
"truncation_strategy": "longest_first",
|
| 2092 |
"unk_token": "<unk>"
|
|
|
|
| 2086 |
"padding_side": "right",
|
| 2087 |
"sep_token": "<unk>",
|
| 2088 |
"stride": 0,
|
| 2089 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
| 2090 |
"truncation_side": "right",
|
| 2091 |
"truncation_strategy": "longest_first",
|
| 2092 |
"unk_token": "<unk>"
|