aiface's picture
Model save
4f4d21a verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ModernBERT-large_nli
    results: []

ModernBERT-large_nli

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6038
  • Accuracy: 0.5787
  • Precision Macro: 0.5794
  • Recall Macro: 0.5790
  • F1 Macro: 0.5792
  • F1 Weighted: 0.5788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
2.1283 1.0 143 1.0136 0.4807 0.4674 0.4835 0.4509 0.4492
1.8848 2.0 286 0.9818 0.5202 0.5745 0.5219 0.5042 0.5038
1.7416 3.0 429 1.1233 0.3220 0.2102 0.3259 0.2190 0.2174
2.2168 4.0 572 1.1135 0.3277 0.1092 0.3333 0.1646 0.1618
2.2099 5.0 715 1.1089 0.3277 0.1092 0.3333 0.1646 0.1618
2.2191 6.0 858 1.1231 0.3282 0.4426 0.3338 0.1655 0.1627
2.2027 7.0 1001 1.0931 0.3774 0.2508 0.3801 0.3016 0.2993
2.1846 8.0 1144 1.0723 0.4013 0.3861 0.3995 0.3692 0.3705
2.1232 9.0 1287 1.0461 0.4244 0.4225 0.4248 0.4203 0.4202
2.0586 10.0 1430 1.0345 0.4510 0.4495 0.4494 0.4210 0.4220
2.0578 11.0 1573 1.0390 0.4523 0.4797 0.4511 0.4522 0.4525
2.0289 12.0 1716 1.0626 0.4665 0.5296 0.4668 0.4391 0.4389
1.5688 13.0 1859 0.8686 0.6084 0.6082 0.6089 0.6064 0.6061
1.2262 14.0 2002 0.9452 0.5973 0.5972 0.5978 0.5961 0.5958
0.6694 15.0 2145 1.2849 0.5809 0.5809 0.5817 0.5802 0.5798
0.2152 16.0 2288 1.9241 0.5752 0.5760 0.5753 0.5755 0.5753
0.043 17.0 2431 2.3196 0.5672 0.5685 0.5673 0.5675 0.5672
0.0074 18.0 2574 2.5393 0.5734 0.5747 0.5736 0.5740 0.5737
0.0015 19.0 2717 2.5970 0.5769 0.5780 0.5772 0.5776 0.5772
0.002 20.0 2860 2.6038 0.5787 0.5794 0.5790 0.5792 0.5788

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4