phobert-base_v3

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2798
  • Accuracy: 0.7805
  • Precision Macro: 0.7813
  • Recall Macro: 0.7807
  • F1 Macro: 0.7806
  • F1 Weighted: 0.7806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
1.0861 1.0 72 0.8945 0.5863 0.6024 0.5883 0.5734 0.5725
0.8854 2.0 144 0.7401 0.6993 0.7354 0.6992 0.6982 0.6983
0.5405 3.0 216 0.5891 0.7814 0.7817 0.7816 0.7813 0.7813
0.4119 4.0 288 0.6523 0.7761 0.7776 0.7758 0.7760 0.7760
0.2355 5.0 360 0.6712 0.7894 0.7899 0.7892 0.7894 0.7894
0.1786 6.0 432 0.8116 0.7725 0.7733 0.7726 0.7726 0.7726
0.1126 7.0 504 0.8907 0.7761 0.7792 0.7761 0.7761 0.7761
0.0844 8.0 576 0.9184 0.7827 0.7834 0.7825 0.7826 0.7827
0.0657 9.0 648 1.0276 0.7734 0.7769 0.7735 0.7737 0.7737
0.0458 10.0 720 1.2265 0.7583 0.7713 0.7581 0.7582 0.7583
0.0494 11.0 792 1.1001 0.7783 0.7793 0.7783 0.7784 0.7784
0.0307 12.0 864 1.1487 0.7783 0.7798 0.7781 0.7783 0.7783
0.0284 13.0 936 1.1877 0.7805 0.7812 0.7805 0.7805 0.7805
0.0192 14.0 1008 1.2280 0.7836 0.7843 0.7839 0.7836 0.7836
0.0172 15.0 1080 1.2466 0.7823 0.7823 0.7823 0.7823 0.7823
0.0108 16.0 1152 1.2673 0.7809 0.7837 0.7810 0.7812 0.7812
0.0111 17.0 1224 1.2614 0.7823 0.7825 0.7823 0.7823 0.7823
0.0094 18.0 1296 1.2754 0.7814 0.7817 0.7815 0.7814 0.7815
0.0079 19.0 1368 1.2823 0.7809 0.7821 0.7811 0.7811 0.7811
0.0095 20.0 1440 1.2798 0.7805 0.7813 0.7807 0.7806 0.7806

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/phobert-base_v3

Base model

vinai/phobert-base
Finetuned
(124)
this model