velectra-base_v2

This model is a fine-tuned version of FPTAI/velectra-base-discriminator-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5503
  • Accuracy: 0.9242
  • Precision Macro: 0.8370
  • Recall Macro: 0.7946
  • F1 Macro: 0.8125
  • F1 Weighted: 0.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.5452 1.0 90 0.2734 0.9071 0.8647 0.6926 0.7190 0.8965
0.2546 2.0 180 0.2530 0.9198 0.8318 0.7882 0.8059 0.9176
0.1788 3.0 270 0.2528 0.9223 0.8241 0.7732 0.7929 0.9193
0.1323 4.0 360 0.2605 0.9261 0.8473 0.8000 0.8197 0.9241
0.0901 5.0 450 0.2840 0.9305 0.8839 0.7986 0.8303 0.9276
0.0682 6.0 540 0.3434 0.9210 0.8458 0.8007 0.8197 0.9192
0.0482 7.0 630 0.3689 0.9191 0.7970 0.8197 0.8073 0.9206
0.0443 8.0 720 0.3906 0.9223 0.8315 0.7728 0.7952 0.9191
0.0275 9.0 810 0.4178 0.9210 0.8717 0.7504 0.7861 0.9155
0.028 10.0 900 0.4642 0.9103 0.7837 0.7837 0.7835 0.9103
0.02 11.0 990 0.4823 0.9179 0.8459 0.7694 0.7971 0.9143
0.0122 12.0 1080 0.5070 0.9179 0.8594 0.7853 0.8136 0.9151
0.0098 13.0 1170 0.5093 0.9248 0.8387 0.7911 0.8106 0.9225
0.0108 14.0 1260 0.5309 0.9248 0.8678 0.7783 0.8098 0.9212
0.0101 15.0 1350 0.5214 0.9261 0.8623 0.7669 0.7986 0.9216
0.0076 16.0 1440 0.5352 0.9242 0.8653 0.7737 0.8054 0.9203
0.0042 17.0 1530 0.5533 0.9198 0.8163 0.7870 0.8000 0.9181
0.0058 18.0 1620 0.5503 0.9255 0.8574 0.7871 0.8138 0.9225
0.0034 19.0 1710 0.5590 0.9248 0.8349 0.8035 0.8173 0.9233
0.0029 20.0 1800 0.5503 0.9242 0.8370 0.7946 0.8125 0.9222

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
1
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/velectra-base_v2

Finetuned
(2)
this model