visobert_v1 / README.md
aiface's picture
Model save
486b69a verified
metadata
library_name: transformers
base_model: uitnlp/visobert
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: visobert_v1
    results: []

visobert_v1

This model is a fine-tuned version of uitnlp/visobert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4766
  • Accuracy: 0.9337
  • Precision Macro: 0.8527
  • Recall Macro: 0.8055
  • F1 Macro: 0.8251
  • F1 Weighted: 0.9316

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.377 1.0 90 0.2037 0.9406 0.9012 0.7694 0.8068 0.9350
0.1659 2.0 180 0.2094 0.9356 0.8396 0.8232 0.8309 0.9348
0.0966 3.0 270 0.2278 0.9381 0.8463 0.8165 0.8298 0.9367
0.0696 4.0 360 0.2619 0.9318 0.8438 0.7756 0.8003 0.9280
0.0468 5.0 450 0.3120 0.9324 0.8362 0.8128 0.8234 0.9313
0.0337 6.0 540 0.3576 0.9311 0.8376 0.7912 0.8103 0.9287
0.0244 7.0 630 0.3796 0.9292 0.8428 0.7816 0.8051 0.9261
0.019 8.0 720 0.4309 0.9349 0.8612 0.8070 0.8286 0.9327
0.0094 9.0 810 0.4022 0.9337 0.8565 0.8134 0.8318 0.9319
0.0098 10.0 900 0.4181 0.9349 0.8534 0.8062 0.8259 0.9329
0.0039 11.0 990 0.4484 0.9330 0.8542 0.8091 0.8281 0.9311
0.0028 12.0 1080 0.4580 0.9349 0.8554 0.8106 0.8294 0.9330
0.0028 13.0 1170 0.4554 0.9318 0.8613 0.7998 0.8242 0.9292
0.0031 14.0 1260 0.4575 0.9330 0.8579 0.8009 0.8237 0.9306
0.0018 15.0 1350 0.4547 0.9356 0.8617 0.8068 0.8291 0.9333
0.0004 16.0 1440 0.4631 0.9343 0.8455 0.8182 0.8305 0.9331
0.0006 17.0 1530 0.4642 0.9356 0.8542 0.8152 0.8319 0.9339
0.0008 18.0 1620 0.4736 0.9343 0.8534 0.8141 0.8311 0.9326
0.0014 19.0 1710 0.4753 0.9337 0.8527 0.8055 0.8251 0.9316
0.0009 20.0 1800 0.4766 0.9337 0.8527 0.8055 0.8251 0.9316

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4