vit5-base_nli

This model is a fine-tuned version of VietAI/vit5-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9361
  • Accuracy: 0.7508
  • Precision Macro: 0.7512
  • Recall Macro: 0.7507
  • F1 Macro: 0.7508
  • F1 Weighted: 0.7508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
1.2042 1.0 72 1.0168 0.4772 0.5084 0.4784 0.4539 0.4536
1.0195 2.0 144 0.7645 0.6723 0.6767 0.6724 0.6711 0.6709
0.6388 3.0 216 0.6869 0.7126 0.7199 0.7121 0.7128 0.7127
0.5149 4.0 288 0.6967 0.7428 0.7453 0.7432 0.7427 0.7425
0.2882 5.0 360 0.7899 0.7375 0.7440 0.7375 0.7376 0.7374
0.2238 6.0 432 0.9740 0.7313 0.7398 0.7319 0.7300 0.7298
0.1326 7.0 504 1.0921 0.7344 0.7372 0.7350 0.7337 0.7335
0.096 8.0 576 1.2234 0.7366 0.7420 0.7361 0.7366 0.7366
0.0755 9.0 648 1.3014 0.7326 0.7355 0.7324 0.7332 0.7330
0.0505 10.0 720 1.3717 0.7397 0.7414 0.7395 0.7400 0.7399
0.0419 11.0 792 1.4521 0.7392 0.7429 0.7389 0.7394 0.7393
0.0301 12.0 864 1.5602 0.7428 0.7433 0.7428 0.7430 0.7429
0.0213 13.0 936 1.7194 0.7450 0.7457 0.7448 0.7450 0.7450
0.0171 14.0 1008 1.7975 0.7450 0.7475 0.7448 0.7449 0.7449
0.018 15.0 1080 1.7963 0.7525 0.7528 0.7525 0.7526 0.7526
0.0084 16.0 1152 1.8312 0.7512 0.7517 0.7512 0.7513 0.7513
0.0083 17.0 1224 1.8834 0.7525 0.7531 0.7526 0.7526 0.7525
0.0089 18.0 1296 1.9212 0.7561 0.7568 0.7561 0.7562 0.7561
0.0064 19.0 1368 1.9379 0.7508 0.7512 0.7507 0.7508 0.7508
0.0082 20.0 1440 1.9361 0.7508 0.7512 0.7507 0.7508 0.7508

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
2
Safetensors
Model size
227M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/vit5-base_nli

Base model

VietAI/vit5-base
Finetuned
(67)
this model