vit5-large_nli
This model is a fine-tuned version of VietAI/vit5-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8846
- Accuracy: 0.8018
- Precision Macro: 0.8019
- Recall Macro: 0.8020
- F1 Macro: 0.8018
- F1 Weighted: 0.8017
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 Weighted |
---|---|---|---|---|---|---|---|---|
1.0755 | 1.0 | 143 | 0.7110 | 0.7020 | 0.7065 | 0.7026 | 0.7008 | 0.7007 |
0.5707 | 2.0 | 286 | 0.5831 | 0.7800 | 0.7892 | 0.7793 | 0.7800 | 0.7801 |
0.3356 | 3.0 | 429 | 0.6000 | 0.7911 | 0.7927 | 0.7916 | 0.7910 | 0.7909 |
0.1497 | 4.0 | 572 | 0.7687 | 0.7827 | 0.7848 | 0.7830 | 0.7826 | 0.7825 |
0.0876 | 5.0 | 715 | 0.8672 | 0.7867 | 0.7892 | 0.7864 | 0.7868 | 0.7868 |
0.0601 | 6.0 | 858 | 1.1073 | 0.7863 | 0.7869 | 0.7862 | 0.7862 | 0.7862 |
0.0473 | 7.0 | 1001 | 1.2264 | 0.7769 | 0.7821 | 0.7777 | 0.7762 | 0.7760 |
0.037 | 8.0 | 1144 | 1.1917 | 0.7947 | 0.7956 | 0.7945 | 0.7948 | 0.7948 |
0.0256 | 9.0 | 1287 | 1.3581 | 0.7867 | 0.7869 | 0.7866 | 0.7867 | 0.7867 |
0.0188 | 10.0 | 1430 | 1.3638 | 0.7916 | 0.7919 | 0.7916 | 0.7915 | 0.7916 |
0.0153 | 11.0 | 1573 | 1.5960 | 0.7902 | 0.7914 | 0.7903 | 0.7903 | 0.7903 |
0.0101 | 12.0 | 1716 | 1.6123 | 0.7938 | 0.7938 | 0.7939 | 0.7938 | 0.7937 |
0.0098 | 13.0 | 1859 | 1.7553 | 0.8 | 0.8017 | 0.8004 | 0.7999 | 0.7999 |
0.006 | 14.0 | 2002 | 1.7906 | 0.7978 | 0.7985 | 0.7982 | 0.7977 | 0.7975 |
0.0047 | 15.0 | 2145 | 1.8154 | 0.7991 | 0.7992 | 0.7993 | 0.7991 | 0.7991 |
0.0034 | 16.0 | 2288 | 1.8285 | 0.8013 | 0.8015 | 0.8016 | 0.8013 | 0.8012 |
0.0018 | 17.0 | 2431 | 1.8543 | 0.8004 | 0.8006 | 0.8007 | 0.8004 | 0.8003 |
0.0021 | 18.0 | 2574 | 1.8807 | 0.8018 | 0.8019 | 0.8020 | 0.8018 | 0.8017 |
0.0009 | 19.0 | 2717 | 1.8842 | 0.8013 | 0.8014 | 0.8015 | 0.8013 | 0.8013 |
0.0019 | 20.0 | 2860 | 1.8846 | 0.8018 | 0.8019 | 0.8020 | 0.8018 | 0.8017 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.7.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 3
Model tree for aiface/vit5-large_nli
Base model
VietAI/vit5-large