File size: 3,052 Bytes
6f7a18b f976928 6f7a18b 97a64f8 001143f 6f7a18b f28a97e 26da2b5 f28a97e 6f7a18b 3bf4916 6f7a18b 7f95447 3bf4916 e0231df 8ee3c01 3bf4916 8ee3c01 e0231df 3bf4916 e0231df e41181f 6f7a18b f976928 6f7a18b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
license: apache-2.0
language:
- zh
- en
tags:
- qwen
- sales
- unsloth
- lora
- logic-tuning
- strategic-thinking
---
# 启明(QiMing)
---
## 重新定义了逻辑的AI,只为更智能.
## An AI that rewrites its own rules for greater intelligence.
---
# 声明
## 模型产生的内容仅供参考,请认真核实后使用
## 此为4B底层模型,会出现信息不足和幻觉错误
## 若觉得此AI模型太像"人",请务必认清,这只是一个更智能的AI模型
---
# DISCLAIMER
## The content generated by this model is for reference purposes only. Users are advised to verify its accuracy independently before use.
## This is a 4-billion-parameter foundation model (4B). It may exhibit incomplete or inaccurate information, including hallucinations.
## If you find this AI too human-like, please remember: it is merely a more intelligent model — not an actual person.
---
### 感谢mradermacher制作的gguf版本
### Thanks mradermacher: For creating the GGUF versions of these models
https://huggingface.co/mradermacher/QiMing-Plus-v1-GGUF
https://huggingface.co/mradermacher/QiMing-Plus-v1-i1-GGUF
### 感谢Qwen团队制作的模型
### The Qwen Team: For developing the foundational model (Qwen/Qwen3-4B-Thinking-2507) used in this project.
https://qwen.ai
### 感谢unsloth,能够让模型调整在3070 8G的显卡上流畅运行
### unsloth.ai (Unsloth): For their work enabling smooth operation of these models on standard hardware like NVIDIA GeForce RTX 3070 GPU with 8GB VRAM.
https://unsloth.ai
### QiMing-Plus-v1基于Qwen/Qwen3-4B-Thinking-2507构建
### QiMing-Plus-v1 is built upon Qwen/Qwen3-4B-Thinking-2507 as its base model.
### Dataset
https://huggingface.co/datasets/aifeifei798/QiMing_Plus_dataset
---
# 如何使用 (how to use)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "aifeifei798/QiMing-Plus-v1"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening <think> tag
print("content:", content)
```
|