BERT base trained on 500k Arabic NLI triplets

This is a sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: aubmindlab/bert-base-arabertv02
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: ar
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'في أي مدينة تقع الحديقة الوطنية الجليدية',
    'الحديقة الجليدية الوطنية هي حديقة وطنية تقع في ولاية مونتانا الأمريكية ، على الحدود الكندية للولايات المتحدة مع المقاطعات الكندية في ألبرتا وكولومبيا البريطانية. حرائق الغابات الكبيرة غير شائعة في المنتزه. ومع ذلك ، في عام 2003 تم حرق أكثر من 13٪ من المتنزه. حديقة جلاسير الوطنية تقع على حدود متنزه ووترتون ليكس الوطني في كندا - يُعرف المنتزهان باسم منتزه واترتون-جلاسير الدولي للسلام وتم تصنيفهما كأول منتزه سلام دولي في العالم في عام 1932.',
    'تصوير: ايرين كونويل - رويترز. 1 بواسطة Alex Dobuzinskis. (2 رويترز) - قال مسؤولون إن حريقًا هائلًا في منتزه مونتانا الجليدي الوطني اندلع لليوم الرابع من خلال الأخشاب الثقيلة يوم الجمعة خلال ذروة موسم الزائرين ، بينما اجتاح حريق آخر في شمال كاليفورنيا الجبال فوق منطقة نبيذ وادي نابا.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss
0.016 250 4.087 -
0.032 500 1.9943 -
0.048 750 1.4472 -
0.064 1000 1.2324 -
0.08 1250 1.0402 -
0.096 1500 1.0357 -
0.112 1750 0.8857 -
0.128 2000 0.8617 -
0.144 2250 0.8101 -
0.16 2500 0.8452 -
0.176 2750 0.7949 -
0.192 3000 0.7706 -
0.208 3250 0.7518 -
0.224 3500 0.7217 -
0.24 3750 0.7225 -
0.256 4000 0.6761 -
0.272 4250 0.6492 -
0.288 4500 0.6379 -
0.304 4750 0.6225 -
0.32 5000 0.5899 0.5937
0.336 5250 0.6406 -
0.352 5500 0.6109 -
0.368 5750 0.5964 -
0.384 6000 0.5325 -
0.4 6250 0.5633 -
0.416 6500 0.5652 -
0.432 6750 0.6109 -
0.448 7000 0.527 -
0.464 7250 0.5215 -
0.48 7500 0.5508 -
0.496 7750 0.5832 -
0.512 8000 0.5817 -
0.528 8250 0.5617 -
0.544 8500 0.4963 -
0.56 8750 0.5168 -
0.576 9000 0.5251 -
0.592 9250 0.5439 -
0.608 9500 0.4962 -
0.624 9750 0.5638 -
0.64 10000 0.4764 0.4306
0.656 10250 0.531 -
0.672 10500 0.4901 -
0.688 10750 0.5076 -
0.704 11000 0.4384 -
0.72 11250 0.4971 -
0.736 11500 0.4457 -
0.752 11750 0.4603 -
0.768 12000 0.4854 -
0.784 12250 0.4702 -
0.8 12500 0.5154 -
0.816 12750 0.4619 -
0.832 13000 0.4829 -
0.848 13250 0.5101 -
0.864 13500 0.4641 -
0.88 13750 0.4797 -
0.896 14000 0.4632 -
0.912 14250 0.4578 -
0.928 14500 0.4552 -
0.944 14750 0.4636 -
0.96 15000 0.4764 0.4142
0.976 15250 0.5066 -
0.992 15500 0.4567 -

Framework Versions

  • Python: 3.10.14
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 2.4.0
  • Accelerate: 0.34.2
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

Matryoshka2dLoss

@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings},
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for akhooli/sbert_ar_nli_500k_p100

Finetuned
(4206)
this model