BERT base trained on 500k Arabic NLI triplets
This is a sentence-transformers model finetuned from aubmindlab/bert-base-arabertv02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: aubmindlab/bert-base-arabertv02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: ar
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'في أي مدينة تقع الحديقة الوطنية الجليدية',
'الحديقة الجليدية الوطنية هي حديقة وطنية تقع في ولاية مونتانا الأمريكية ، على الحدود الكندية للولايات المتحدة مع المقاطعات الكندية في ألبرتا وكولومبيا البريطانية. حرائق الغابات الكبيرة غير شائعة في المنتزه. ومع ذلك ، في عام 2003 تم حرق أكثر من 13٪ من المتنزه. حديقة جلاسير الوطنية تقع على حدود متنزه ووترتون ليكس الوطني في كندا - يُعرف المنتزهان باسم منتزه واترتون-جلاسير الدولي للسلام وتم تصنيفهما كأول منتزه سلام دولي في العالم في عام 1932.',
'تصوير: ايرين كونويل - رويترز. 1 بواسطة Alex Dobuzinskis. (2 رويترز) - قال مسؤولون إن حريقًا هائلًا في منتزه مونتانا الجليدي الوطني اندلع لليوم الرابع من خلال الأخشاب الثقيلة يوم الجمعة خلال ذروة موسم الزائرين ، بينما اجتاح حريق آخر في شمال كاليفورنيا الجبال فوق منطقة نبيذ وادي نابا.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.016 | 250 | 4.087 | - |
0.032 | 500 | 1.9943 | - |
0.048 | 750 | 1.4472 | - |
0.064 | 1000 | 1.2324 | - |
0.08 | 1250 | 1.0402 | - |
0.096 | 1500 | 1.0357 | - |
0.112 | 1750 | 0.8857 | - |
0.128 | 2000 | 0.8617 | - |
0.144 | 2250 | 0.8101 | - |
0.16 | 2500 | 0.8452 | - |
0.176 | 2750 | 0.7949 | - |
0.192 | 3000 | 0.7706 | - |
0.208 | 3250 | 0.7518 | - |
0.224 | 3500 | 0.7217 | - |
0.24 | 3750 | 0.7225 | - |
0.256 | 4000 | 0.6761 | - |
0.272 | 4250 | 0.6492 | - |
0.288 | 4500 | 0.6379 | - |
0.304 | 4750 | 0.6225 | - |
0.32 | 5000 | 0.5899 | 0.5937 |
0.336 | 5250 | 0.6406 | - |
0.352 | 5500 | 0.6109 | - |
0.368 | 5750 | 0.5964 | - |
0.384 | 6000 | 0.5325 | - |
0.4 | 6250 | 0.5633 | - |
0.416 | 6500 | 0.5652 | - |
0.432 | 6750 | 0.6109 | - |
0.448 | 7000 | 0.527 | - |
0.464 | 7250 | 0.5215 | - |
0.48 | 7500 | 0.5508 | - |
0.496 | 7750 | 0.5832 | - |
0.512 | 8000 | 0.5817 | - |
0.528 | 8250 | 0.5617 | - |
0.544 | 8500 | 0.4963 | - |
0.56 | 8750 | 0.5168 | - |
0.576 | 9000 | 0.5251 | - |
0.592 | 9250 | 0.5439 | - |
0.608 | 9500 | 0.4962 | - |
0.624 | 9750 | 0.5638 | - |
0.64 | 10000 | 0.4764 | 0.4306 |
0.656 | 10250 | 0.531 | - |
0.672 | 10500 | 0.4901 | - |
0.688 | 10750 | 0.5076 | - |
0.704 | 11000 | 0.4384 | - |
0.72 | 11250 | 0.4971 | - |
0.736 | 11500 | 0.4457 | - |
0.752 | 11750 | 0.4603 | - |
0.768 | 12000 | 0.4854 | - |
0.784 | 12250 | 0.4702 | - |
0.8 | 12500 | 0.5154 | - |
0.816 | 12750 | 0.4619 | - |
0.832 | 13000 | 0.4829 | - |
0.848 | 13250 | 0.5101 | - |
0.864 | 13500 | 0.4641 | - |
0.88 | 13750 | 0.4797 | - |
0.896 | 14000 | 0.4632 | - |
0.912 | 14250 | 0.4578 | - |
0.928 | 14500 | 0.4552 | - |
0.944 | 14750 | 0.4636 | - |
0.96 | 15000 | 0.4764 | 0.4142 |
0.976 | 15250 | 0.5066 | - |
0.992 | 15500 | 0.4567 | - |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for akhooli/sbert_ar_nli_500k_p100
Base model
aubmindlab/bert-base-arabertv02