InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists

GitHub: https://github.com/AlaaLab/InstructCV

pCVB5B8.png

Example

To use InstructCV, install diffusers using main for now. The pipeline will be available in the next release

pip install diffusers accelerate safetensors transformers
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler

model_id = "yulu2/InstructCV"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)

url = "put your url here"

def download_image(url):
    image = PIL.Image.open(requests.get(url, stream=True).raw)
    image = PIL.ImageOps.exif_transpose(image)
    image = image.convert("RGB")
    return image

image         = download_image(URL)
seed          = random.randint(0, 100000)
generator     = torch.manual_seed(seed)
width, height = image.size
factor        = 512 / max(width, height)
factor        = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width         = int((width * factor) // 64) * 64
height        = int((height * factor) // 64) * 64
image         = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS)

prompt        = "Detect the person."
images        = pipe(prompt, image=image, num_inference_steps=100, generator=generator).images[0]
images[0]
Downloads last month
113
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Space using alaa-lab/InstructCV 1