InstructCV: Instruction-Tuned Text-to-Image Diffusion Models as Vision Generalists
GitHub: https://github.com/AlaaLab/InstructCV
Example
To use InstructCV
, install diffusers
using main
for now. The pipeline will be available in the next release
pip install diffusers accelerate safetensors transformers
import PIL
import requests
import torch
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
model_id = "yulu2/InstructCV"
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(model_id, torch_dtype=torch.float16, safety_checker=None, variant="ema")
pipe.to("cuda")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
url = "put your url here"
def download_image(url):
image = PIL.Image.open(requests.get(url, stream=True).raw)
image = PIL.ImageOps.exif_transpose(image)
image = image.convert("RGB")
return image
image = download_image(URL)
seed = random.randint(0, 100000)
generator = torch.manual_seed(seed)
width, height = image.size
factor = 512 / max(width, height)
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
image = ImageOps.fit(image, (width, height), method=Image.Resampling.LANCZOS)
prompt = "Detect the person."
images = pipe(prompt, image=image, num_inference_steps=100, generator=generator).images[0]
images[0]
- Downloads last month
- 113
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.