T5 Dhivehi Typo Correction

A fine-tuned T5 model for correcting typos in Dhivehi text. This project uses a custom-trained T5-small model to detect and fix spelling errors in Dhivehi text.

Overview

This project implements a spell-checking system using:

  • T5-small as the base model
  • Custom Dhivehi tokenizer
  • Weights & Biases for experiment tracking
  • Hugging Face's Transformers library

Training parameters:

  • Learning rate: 3e-4
  • Batch size: 64
  • Training epochs: 3
  • Weight decay: 0.01
  • Warmup ratio: 0.1
  • Maximum sequence length: 128 tokens

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("alakxender/dhivehi-quick-spell-check-t5")
model = AutoModelForSeq2SeqLM.from_pretrained("alakxender/dhivehi-quick-spell-check-t5")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Correct text
def correct_text(input_text):
    input_text = "fix: " + input_text
    inputs = tokenizer(input_text, return_tensors="pt", max_length=128, truncation=True)
    inputs = inputs.to(device)
    
    outputs = model.generate(
        input_ids=inputs["input_ids"],
        attention_mask=inputs.get("attention_mask", None),
        max_length=128,
        num_beams=4,
        early_stopping=True
    )
    
    return tokenizer.decode(outputs[0], skip_special_tokens=True)
Downloads last month
58
Safetensors
Model size
60.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for alakxender/dhivehi-quick-spell-check-t5

Base model

google-t5/t5-small
Finetuned
(1952)
this model

Dataset used to train alakxender/dhivehi-quick-spell-check-t5

Space using alakxender/dhivehi-quick-spell-check-t5 1