TrOCR Finetuned for Dhivehi Text Recognition

A TrOCR model finetuned for Dhivehi (Divehi/Maldivian) text recognition using DeiT base encoder and BERT decoder.

Model Details

  • Base models:
    • Encoder: facebook/deit-base-distilled-patch16-384
    • Decoder: alakxender/bert-base-dv
  • Training data: 10k samples with 90/10 train/test split
  • Input size: 384x384 pixels
  • Beam search parameters:
    • max_length: 64
    • num_beams: 4
    • early_stopping: True
    • length_penalty: 2.0
    • no_repeat_ngram_size: 3

Training

The model was trained with:

  • 7 epochs
  • Batch size: 8
  • Learning rate: 4e-5
  • FP16 mixed precision
  • Training augmentations:
    • Elastic transform (α=8.0, σ=5.0)
    • Gaussian blur (kernel size=(5,9), σ=(0.1,5))
    • Resize (384x384)
    • Normalization ([0.5,0.5,0.5], [0.5,0.5,0.5])

Usage

from PIL import Image
import torch
from torchvision import transforms
from transformers import (
   DeiTImageProcessor,
   TrOCRProcessor, 
   VisionEncoderDecoderModel,
   AutoTokenizer
)

class OCRPredictor:
   def __init__(self, model_name="alakxender/trocr-dv-diet-base-bert"):
       self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
       self.model = self._load_model(model_name)
       self.processor = self._load_processor()
       self.transform = self._get_transforms()
       
   def _load_model(self, model_name):
       model = VisionEncoderDecoderModel.from_pretrained(model_name)
       return model.to(self.device)
   
   def _load_processor(self):
       tokenizer = AutoTokenizer.from_pretrained("alakxender/trocr-dv-diet-base-bert")
       image_processor = DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-384")
       return TrOCRProcessor(image_processor=image_processor, tokenizer=tokenizer)
       
   def _get_transforms(self):
       return transforms.Compose([
           transforms.Resize((384, 384)),
           transforms.ToTensor(),
           transforms.Normalize([0.5] * 3, [0.5] * 3)
       ])
       
   def predict(self, image_path):
       image = Image.open(image_path).convert("RGB")
       pixel_values = self.transform(image).unsqueeze(0).to(self.device)
       
       outputs = self.model.generate(
           pixel_values,
           max_length=64,
           num_beams=4,
           early_stopping=True,
           length_penalty=2.0,
           no_repeat_ngram_size=3
       )
       
       return self.processor.decode(outputs[0], skip_special_tokens=True)
       
# Usage
predictor = OCRPredictor()
text = predictor.predict("ocr2.png")
print(text) # ތިން މިނިސްޓްރީއެއް ހިންގާ މ.ގްރީން ބިލްޑިންގުގައި މިދިޔަ ބުރާސްފަތި ދުވަހު ހިނގި ބޮޑު އަލިފާނުގެ.

Evaluation Results

[
  {
    "file_name": "data/images/DV01-04/DV01-04_140.jpg",
    "predicted_text": "ޤާނޫނުގެ 42 ވަނަ މާއްދާގައި ލާޒިމްކުރާ މި ރިޕޯޓު ތައްޔާރުކޮށް ފޮނުވުމުގެ ޒިންމާއަކީ ޤާނޫނުން އިދާރާގެ އިންފޮމޭޝަން އޮފިސަރު ކުރައްވަންޖެހޭ ކަމެކެވެ .",
    "true_text": "ޤާނޫނުގެ 42 ވަނަ މާއްދާގައި ލާޒިމްކުރާ މި ރިޕޯޓު ތައްޔާރުކޮށް ފޮނުވުމުގެ ޒިންމާއަކީ ޤާނޫނުން އިދާރާގެ އިންފޮމޭޝަން އޮފިސަރު ކުރައްވަންޖެހޭ ކަމެކެވެ."
  }
]
Downloads last month
25
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for alakxender/trocr-dv-diet-base-bert

Finetuned
(1)
this model

Dataset used to train alakxender/trocr-dv-diet-base-bert