This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1718
  • Wer: 59.3103

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 36
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7327 0.0213 300 0.5098 93.9655
0.0845 0.0425 600 0.3085 75.8621
0.0512 0.0213 900 0.2694 70.8621
0.0333 0.0425 1200 0.2489 66.0345
0.0435 0.0638 1500 0.2286 64.4828
0.037 0.0851 1800 0.2187 64.4828
0.0337 0.1063 2100 0.2117 62.7586
0.0303 0.1276 2400 0.2036 60.5172
0.0282 0.1489 2700 0.1898 59.3103
0.0267 0.1701 3000 0.1864 59.8276
0.0272 0.1914 3300 0.1788 59.4828
0.0239 0.2126 3600 0.1759 58.4483
0.0229 0.2339 3900 0.1718 59.3103

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for alakxender/whisper-large-v3-lg-dv

Finetuned
(632)
this model

Collection including alakxender/whisper-large-v3-lg-dv