MTSUSpring2025SoftwareEngineering
This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.5063
- Rouge1: 0.0879
- Rouge2: 0.0695
- Rougel: 0.0847
- Rougelsum: 0.0847
- Gen Len: 7.2123
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.8535 | 1.0 | 14778 | 1.6426 | 0.0806 | 0.063 | 0.0776 | 0.0776 | 6.8024 |
1.7555 | 2.0 | 29556 | 1.5664 | 0.0839 | 0.0658 | 0.0808 | 0.0808 | 7.0022 |
1.7044 | 3.0 | 44334 | 1.5297 | 0.086 | 0.0676 | 0.0828 | 0.0828 | 7.1049 |
1.7096 | 4.0 | 59112 | 1.5119 | 0.0875 | 0.0692 | 0.0843 | 0.0843 | 7.186 |
1.6789 | 5.0 | 73890 | 1.5063 | 0.0879 | 0.0695 | 0.0847 | 0.0847 | 7.2123 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for aldats/MTSUSpring2025SoftwareEngineering
Base model
google-t5/t5-small