medsiglip-448-ft-tb-screening

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5291

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
3.5828 0.4762 25 2.4233
1.947 0.9524 50 2.6277
1.9315 1.4190 75 2.4902
1.9614 1.8952 100 2.5603
1.9357 2.3619 125 2.5067
1.9396 2.8381 150 2.6298
1.9313 3.3048 175 2.5459
1.8956 3.7810 200 2.5050
1.9271 4.2476 225 2.5318
1.9317 4.7238 250 2.5298
1.9365 5.1905 275 2.5108
1.9255 5.6667 300 2.5120
1.9284 6.1333 325 2.5134
1.907 6.6095 350 2.5199
1.8996 7.0762 375 2.5279
1.9321 7.5524 400 2.5274
1.9101 8.0190 425 2.5273
1.9131 8.4952 450 2.5293
1.91 8.9714 475 2.5300
1.919 9.4381 500 2.5290
1.9189 9.9143 525 2.5291

Framework versions

  • Transformers 4.56.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
23
Safetensors
Model size
878M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support