medsiglip-448-ft-tb-screening
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5291
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.5828 | 0.4762 | 25 | 2.4233 |
1.947 | 0.9524 | 50 | 2.6277 |
1.9315 | 1.4190 | 75 | 2.4902 |
1.9614 | 1.8952 | 100 | 2.5603 |
1.9357 | 2.3619 | 125 | 2.5067 |
1.9396 | 2.8381 | 150 | 2.6298 |
1.9313 | 3.3048 | 175 | 2.5459 |
1.8956 | 3.7810 | 200 | 2.5050 |
1.9271 | 4.2476 | 225 | 2.5318 |
1.9317 | 4.7238 | 250 | 2.5298 |
1.9365 | 5.1905 | 275 | 2.5108 |
1.9255 | 5.6667 | 300 | 2.5120 |
1.9284 | 6.1333 | 325 | 2.5134 |
1.907 | 6.6095 | 350 | 2.5199 |
1.8996 | 7.0762 | 375 | 2.5279 |
1.9321 | 7.5524 | 400 | 2.5274 |
1.9101 | 8.0190 | 425 | 2.5273 |
1.9131 | 8.4952 | 450 | 2.5293 |
1.91 | 8.9714 | 475 | 2.5300 |
1.919 | 9.4381 | 500 | 2.5290 |
1.9189 | 9.9143 | 525 | 2.5291 |
Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 23