Add paper link and abstract to model card
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: cc-by-4.0
|
3 |
language:
|
4 |
- cs
|
5 |
- pl
|
@@ -7,6 +6,7 @@ language:
|
|
7 |
- sl
|
8 |
- en
|
9 |
library_name: transformers
|
|
|
10 |
tags:
|
11 |
- translation
|
12 |
- mt
|
@@ -16,6 +16,7 @@ tags:
|
|
16 |
- multilingual
|
17 |
- allegro
|
18 |
- laniqo
|
|
|
19 |
---
|
20 |
|
21 |
# MultiSlav BiDi Models
|
@@ -28,9 +29,11 @@ tags:
|
|
28 |
## Multilingual BiDi MT Models
|
29 |
|
30 |
___BiDi___ is a collection of Encoder-Decoder vanilla transformer models trained on sentence-level Machine Translation task.
|
31 |
-
Each model is supporting Bi-Directional translation.
|
|
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
Experiments were conducted under research project by [Machine Learning Research](https://ml.allegro.tech/) lab for [Allegro.com](https://ml.allegro.tech/).
|
36 |
Big thanks to [laniqo.com](laniqo.com) for cooperation in the research.
|
@@ -115,149 +118,20 @@ All training parameters are listed in table below.
|
|
115 |
|
116 |
### Training hyperparameters:
|
117 |
|
118 |
-
| **Hyperparameter** | **Value** |
|
119 |
-
|----------------------------|------------------------------------------------------------------------------------------------------------|
|
120 |
-
| Total Parameter Size | 209M |
|
121 |
-
| Vocab Size | 32k |
|
122 |
-
| Base Parameters | [Marian transfromer-big](https://github.com/marian-nmt/marian-dev/blob/master/src/common/aliases.cpp#L113) |
|
123 |
-
| Number of Encoding Layers | 6 |
|
124 |
-
| Number of Decoding Layers | 6 |
|
125 |
-
| Model Dimension | 1024 |
|
126 |
-
| FF Dimension | 4096 |
|
127 |
-
| Heads | 16 |
|
128 |
-
| Dropout | 0.1 |
|
129 |
-
| Batch Size | mini batch fit to VRAM |
|
130 |
-
| Training Accelerators | 4x A100 40GB |
|
131 |
-
| Max Length | 100 tokens |
|
132 |
-
| Optimizer | Adam |
|
133 |
-
| Warmup steps | 8000 |
|
134 |
-
| Context | Sentence-level MT |
|
135 |
-
| Languages Supported | See [Bi-Di models available](#Bi-Di-models-available) |
|
136 |
-
| Precision | float16 |
|
137 |
-
| Validation Freq | 3000 steps |
|
138 |
-
| Stop Metric | ChrF |
|
139 |
-
| Stop Criterion | 20 Validation steps |
|
140 |
-
|
141 |
|
142 |
## Training corpora
|
143 |
|
144 |
-
The main research question was: "How does adding additional, related languages impact the quality of the model?" - we explored it in the Slavic language family.
|
145 |
-
___BiDi___ models are our baseline before expanding the data-regime by using higher-level multilinguality.
|
146 |
-
|
147 |
-
Datasets were downloaded via [MT-Data](https://pypi.org/project/mtdata/0.2.10/) library.
|
148 |
-
The number of total examples post filtering and deduplication varies, depending on languages supported, see the table below.
|
149 |
-
|
150 |
-
| **Language pair** | **Number of training examples** |
|
151 |
-
|-------------------|--------------------------------:|
|
152 |
-
| Czech ↔ Polish | 63M |
|
153 |
-
| Czech ↔ Slovak | 30M |
|
154 |
-
| Czech ↔ Slovene | 25M |
|
155 |
-
| Polish ↔ Slovak | 26M |
|
156 |
-
| Polish ↔ Slovene | 23M |
|
157 |
-
| Slovak ↔ Slovene | 18M |
|
158 |
-
| ---------------- | ------------------------------- |
|
159 |
-
| Czech ↔ English | 151M |
|
160 |
-
| English ↔ Polish | 150M |
|
161 |
-
| English ↔ Slovak | 52M |
|
162 |
-
| English ↔ Slovene | 40M |
|
163 |
-
|
164 |
-
The datasets used (only applicable to specific directions):
|
165 |
-
|
166 |
-
| **Corpus** |
|
167 |
-
|----------------------|
|
168 |
-
| paracrawl |
|
169 |
-
| opensubtitles |
|
170 |
-
| multiparacrawl |
|
171 |
-
| dgt |
|
172 |
-
| elrc |
|
173 |
-
| xlent |
|
174 |
-
| wikititles |
|
175 |
-
| wmt |
|
176 |
-
| wikimatrix |
|
177 |
-
| dcep |
|
178 |
-
| ELRC |
|
179 |
-
| tildemodel |
|
180 |
-
| europarl |
|
181 |
-
| eesc |
|
182 |
-
| eubookshop |
|
183 |
-
| emea |
|
184 |
-
| jrc_acquis |
|
185 |
-
| ema |
|
186 |
-
| qed |
|
187 |
-
| elitr_eca |
|
188 |
-
| EU-dcep |
|
189 |
-
| rapid |
|
190 |
-
| ecb |
|
191 |
-
| kde4 |
|
192 |
-
| news_commentary |
|
193 |
-
| kde |
|
194 |
-
| bible_uedin |
|
195 |
-
| europat |
|
196 |
-
| elra |
|
197 |
-
| wikipedia |
|
198 |
-
| wikimedia |
|
199 |
-
| tatoeba |
|
200 |
-
| globalvoices |
|
201 |
-
| euconst |
|
202 |
-
| ubuntu |
|
203 |
-
| php |
|
204 |
-
| ecdc |
|
205 |
-
| eac |
|
206 |
-
| eac_reference |
|
207 |
-
| gnome |
|
208 |
-
| EU-eac |
|
209 |
-
| books |
|
210 |
-
| EU-ecdc |
|
211 |
-
| newsdev |
|
212 |
-
| khresmoi_summary |
|
213 |
-
| czechtourism |
|
214 |
-
| khresmoi_summary_dev |
|
215 |
-
| worldbank |
|
216 |
|
217 |
## Evaluation
|
218 |
|
219 |
-
Evaluation of the models was performed on [Flores200](https://huggingface.co/datasets/facebook/flores) dataset.
|
220 |
-
The table below compares performance of the open-source models and all applicable models from our collection.
|
221 |
-
Metric used: Unbabel/wmt22-comet-da.
|
222 |
-
|
223 |
-
| **Direction** | **CES → ENG** | **CES → POL** | **CES → SLK** | **CES → SLV** | **ENG → CES** | **ENG → POL** | **ENG → SLK** | **ENG → SLV** | **POL → CES** | **POL → ENG** | **POL → SLK** | **POL → SLV** | **SLK → CES** | **SLK → ENG** | **SLK → POL** | **SLK → SLV** | **SLV → CES** | **SLV → ENG** | **SLV → POL** | **SLV → SLK** |
|
224 |
-
|----------------------------------------------------|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|--------------:|
|
225 |
-
| **M2M-100** | 87.0 | 89.0 | 92.1 | 89.7 | 88.6 | 86.4 | 88.4 | 87.3 | 89.6 | 84.6 | 89.4 | 88.4 | 92.7 | 86.8 | 89.1 | 89.6 | 90.3 | 86.4 | 88.7 | 90.1 |
|
226 |
-
| **NLLB-200** | 88.1 | 88.9 | 91.2 | 88.6 | 90.4 | __88.5__ | 90.1 | 88.8 | 89.4 | __85.8__ | 88.9 | 87.7 | 91.8 | 88.2 | 88.9 | 88.8 | 90.0 | __87.5__ | 88.6 | 89.4 |
|
227 |
-
| **Seamless-M4T** | 87.5 | 80.9 | 90.8 | 82.0 | __90.7__ | __88.5__ | __90.6__ | __89.6__ | 79.6 | 85.4 | 80.0 | 76.4 | 91.5 | 87.2 | 81.2 | 82.9 | 80.9 | 87.3 | 76.7 | 81.0 |
|
228 |
-
| **OPUS-MT Sla-Sla** | __88.2__ | 82.8 | - | 83.4 | 89.1 | 85.6 | - | 84.5 | 82.9 | 82.2 | - | 81.2 | - | - | - | - | 83.5 | 84.1 | 80.8 | - |
|
229 |
-
| **OPUS-MT SK-EN** | - | - | - | - | - | - | 89.5 | - | - | - | - | - | - | __88.4__ | - | - | - | - | - | - |
|
230 |
-
| _Our contributions:_ | | | | | | | | | | | | | | | | | | | | |
|
231 |
-
| **BiDi Models**<span style="color:green;">*</span> | 87.5 | 89.4 | 92.4 | 89.8 | 87.8 | 86.2 | 87.2 | 86.6 | 90.0 | 85.0 | 89.1 | 88.4 | 92.9 | 87.3 | 88.8 | 89.4 | 90.0 | 86.9 | 88.1 | 89.1 |
|
232 |
-
| **P4-pol**<span style="color:red;">◊</span> | - | 89.6 | 90.8 | 88.7 | - | - | - | - | 90.2 | - | 89.8 | 88.7 | 91.0 | - | 89.3 | 88.4 | 89.3 | - | 88.7 | 88.5 |
|
233 |
-
| **P5-eng**<span style="color:red;">◊</span> | 88.0 | 89.0 | 90.7 | 89.0 | 88.8 | 87.3 | 88.4 | 87.5 | 89.0 | 85.7 | 88.5 | 87.8 | 91.0 | 88.2 | 88.6 | 88.5 | 89.6 | 87.2 | 88.4 | 88.9 |
|
234 |
-
| **P5-ces**<span style="color:red;">◊</span> | 87.9 | 89.6 | __92.5__ | 89.9 | 88.4 | 85.0 | 87.9 | 85.9 | 90.3 | 84.5 | 89.5 | 88.0 | __93.0__ | 87.8 | 89.4 | 89.8 | 90.3 | 85.7 | 87.9 | 89.8 |
|
235 |
-
| **MultiSlav-4slav** | - | 89.7 | __92.5__ | 90.0 | - | - | - | - | 90.2 | - | 89.6 | 88.7 | 92.9 | - | 89.4 | 90.1 | __90.6__ | - | 88.9 | __90.2__ |
|
236 |
-
| **MultiSlav-5lang** | 87.8 | __89.8__ | __92.5__ | __90.1__ | 88.9 | 86.9 | 88.0 | 87.3 | __90.4__ | 85.4 | 89.8 | __88.9__ | 92.9 | 87.8 | __89.6__ | __90.2__ | __90.6__ | 87.0 | __89.2__ | __90.2__ |
|
237 |
-
|
238 |
-
<span style="color:red;">◊</span> system of 2 models *Many2XXX* and *XXX2Many*, see [P5-ces2many](https://huggingface.co/allegro/p5-ces2many)
|
239 |
-
|
240 |
-
<span style="color:green;">*</span> results combined for all bi-directional models; each values for applicable model
|
241 |
|
242 |
## Limitations and Biases
|
243 |
|
244 |
-
We did not evaluate inherent bias contained in training datasets. It is advised to validate bias of our models in perspective domain. This might be especially problematic in translation from English to Slavic languages, which require explicitly indicated gender and might hallucinate based on bias present in training data.
|
245 |
-
|
246 |
## License
|
247 |
|
248 |
-
The model is licensed under CC BY 4.0, which allows for commercial use.
|
249 |
-
|
250 |
## Citation
|
251 |
TO BE UPDATED SOON 🤗
|
252 |
|
253 |
|
254 |
|
255 |
-
## Contact Options
|
256 |
-
|
257 |
-
Authors:
|
258 |
-
- MLR @ Allegro: [Artur Kot](https://linkedin.com/in/arturkot), [Mikołaj Koszowski](https://linkedin.com/in/mkoszowski), [Wojciech Chojnowski](https://linkedin.com/in/wojciech-chojnowski-744702348), [Mieszko Rutkowski](https://linkedin.com/in/mieszko-rutkowski)
|
259 |
-
- Laniqo.com: [Artur Nowakowski](https://linkedin.com/in/artur-nowakowski-mt), [Kamil Guttmann](https://linkedin.com/in/kamil-guttmann), [Mikołaj Pokrywka](https://linkedin.com/in/mikolaj-pokrywka)
|
260 |
-
|
261 |
-
Please don't hesitate to contact authors if you have any questions or suggestions:
|
262 |
-
- e-mail: [email protected] or [email protected]
|
263 |
-
- LinkedIn: [Artur Kot](https://linkedin.com/in/arturkot) or [Mikołaj Koszowski](https://linkedin.com/in/mkoszowski)
|
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- cs
|
4 |
- pl
|
|
|
6 |
- sl
|
7 |
- en
|
8 |
library_name: transformers
|
9 |
+
license: cc-by-4.0
|
10 |
tags:
|
11 |
- translation
|
12 |
- mt
|
|
|
16 |
- multilingual
|
17 |
- allegro
|
18 |
- laniqo
|
19 |
+
pipeline_tag: translation
|
20 |
---
|
21 |
|
22 |
# MultiSlav BiDi Models
|
|
|
29 |
## Multilingual BiDi MT Models
|
30 |
|
31 |
___BiDi___ is a collection of Encoder-Decoder vanilla transformer models trained on sentence-level Machine Translation task.
|
32 |
+
Each model is supporting Bi-Directional translation. More information is available in our [MultiSlav paper](https://hf.co/papers/2502.14509).
|
33 |
+
|
34 |
|
35 |
+
|
36 |
+
___BiDi___ models are part of the [___MultiSlav___ collection](https://huggingface.co/collections/allegro/multislav-6793d6b6419e5963e759a683).
|
37 |
|
38 |
Experiments were conducted under research project by [Machine Learning Research](https://ml.allegro.tech/) lab for [Allegro.com](https://ml.allegro.tech/).
|
39 |
Big thanks to [laniqo.com](laniqo.com) for cooperation in the research.
|
|
|
118 |
|
119 |
### Training hyperparameters:
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
## Training corpora
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
## Evaluation
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
## Limitations and Biases
|
129 |
|
|
|
|
|
130 |
## License
|
131 |
|
|
|
|
|
132 |
## Citation
|
133 |
TO BE UPDATED SOON 🤗
|
134 |
|
135 |
|
136 |
|
137 |
+
## Contact Options
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|