abhaybd commited on
Commit
3f583b5
·
verified ·
1 Parent(s): 1f54ced

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -0
README.md CHANGED
@@ -7,6 +7,11 @@ language:
7
  base_model:
8
  - allenai/Molmo-7B-D-0924
9
  pipeline_tag: robotics
 
 
 
 
 
10
  ---
11
 
12
  # GraspMolmo
@@ -42,4 +47,32 @@ Running the above code could result in the following output:
42
  In order to accomplish the task "Pour coffee from the blue mug.", the optimal grasp is described as follows: "The grasp is on the middle handle of the blue mug, with fingers grasping the sides of the handle.".
43
 
44
  <point x="28.6" y="20.7" alt="Where to grasp the object">Where to grasp the object</point>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ```
 
7
  base_model:
8
  - allenai/Molmo-7B-D-0924
9
  pipeline_tag: robotics
10
+ tags:
11
+ - robotics
12
+ - grasping
13
+ - task-oriented-grasping
14
+ - manipulation
15
  ---
16
 
17
  # GraspMolmo
 
47
  In order to accomplish the task "Pour coffee from the blue mug.", the optimal grasp is described as follows: "The grasp is on the middle handle of the blue mug, with fingers grasping the sides of the handle.".
48
 
49
  <point x="28.6" y="20.7" alt="Where to grasp the object">Where to grasp the object</point>
50
+ ```
51
+
52
+ ## Grasp Inference
53
+
54
+ To predict a grasp point *and* match it to one of the candidate grasps, refer to the [GraspMolmo](https://github.com/abhaybd/GraspMolmo/blob/main/graspmolmo/inference/grasp_predictor.py) class.
55
+ First, install `graspmolmo` with
56
+
57
+ ```bash
58
+ pip install "git+https://github.com/abhaybd/GraspMolmo.git#egg=graspmolmo[infer]"
59
+ ```
60
+
61
+ and then inference can be run as follows:
62
+
63
+ ```python
64
+ from graspmolmo.inference.grasp_predictor import GraspMolmo
65
+
66
+ task = "..."
67
+ rgb, depth = get_image()
68
+ camera_intrinsics = np.array(...)
69
+
70
+ point_cloud = backproject(rgb, depth, camera_intrinsics)
71
+ # grasps are in the camera reference frame
72
+ grasps = predict_grasps(point_cloud) # Using your favorite grasp predictor (e.g. M2T2)
73
+
74
+ gm = GraspMolmo()
75
+ idx = gm.pred_grasp(rgb, point_cloud, task, grasps)
76
+
77
+ print(f"Predicted grasp: {grasps[idx]}")
78
  ```