File size: 3,657 Bytes
dc054fe 37256fe a2197fc 37256fe 8bc691c dc054fe 62f5e51 dc054fe 62f5e51 c3bf353 b9e81f4 dc054fe c3bf353 664f2a0 c3bf353 dc054fe c3bf353 dc054fe c3bf353 82dfb4f 0fc8e20 dc054fe c3bf353 dc054fe c3bf353 62f5e51 dc054fe c3bf353 dc054fe c3bf353 dc054fe c3bf353 dc054fe c3bf353 dc054fe c3bf353 7d1decb c3bf353 dc054fe c3bf353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: llama3.1
language:
- en
pipeline_tag: text-classification
datasets:
- allenai/llama-3.1-tulu-3-70b-preference-mixture
- Skywork/Skywork-Reward-Preference-80K-v0.2
base_model:
- meta-llama/Llama-3.1-70B-Instruct
library_name: transformers
---
# Model Card for Llama-3.1-70B-Instruct-RM-RB2
<!-- Provide a quick summary of what the model is/does. -->
Llama-3.1-70B-Instruct-RM-RB2 is one of 7 sets of reward models (RMs) released with Reward Bench 2.
We have released a large set of 70 total reward model checkpoints that we used to develop the benchmark and correlate it with downstream PPO / Best-of-N performance.
[Models](https://huggingface.co/collections/allenai/reward-bench-2-683d2612a4b3e38a3e53bb51) | [Code](https://github.com/allenai/reward-bench) | [Eval. Dataset v2](https://huggingface.co/datasets/allenai/reward-bench-2) | [Results v2](https://huggingface.co/datasets/allenai/reward-bench-2-results) | [Paper](https://arxiv.org/abs/2506.01937)
## Model Details
The model is a standard classifier, `AutoModelForSequenceClassification` within the HuggingFace ecosystem, trained on binary preference data.
For each model in this batch the main revision is the best model we obtained for that base model, and we include all other training data and hyperparameter combinations in the revisions for further research.
To load a model from a revision, modify the following:
```python
from transformers import AutoModelForSequenceClassification
rm = AutoModelForSequenceClassification("allenai/Llama-3.1-70B-Instruct-RM-RB2", revision="2")
```
<!-- Provide a longer summary of what this model is. -->
| Revision | Training Data | Learning Rate | Num Epochs | RewardBench 2 Score | Factuality | Precise IF | Math | Safety | Focus | Ties |
|----------|---------------|---------------|------------|---------------------|------------|------------|------|--------|-------|------|
| main | Combined | 3e-6 | 1 | 76.1 | 81.3 | 41.9 | 69.9 | 88.4 | 86.5 | 88.3 |
| 1 | Combined | 3e-6 | 1 | 75.7 | 81.7 | 41.2 | 70.5 | 87.3 | 85.5 | 88.1 |
| 2 | Combined | 1e-6 | 1 | 73.1 | 74.7 | 37.5 | 69.4 | 86.2 | 80.6 | 89.9 |
- **Developed by:** Allen Institute for AI
- **Training code:** https://github.com/allenai/open-instruct
- **Language(s) (NLP):** en
- **License:** Llama 3.1 Community License Agreement
- **Finetuned from model:** [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct)
## License
All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
Tülu3 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
The models have been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms:
[Gemma Terms of Use](https://ai.google.dev/gemma/terms) and [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) (models were improved using Qwen 2.5).
## Citation
```
@misc{malik2025rewardbench2advancingreward,
title={RewardBench 2: Advancing Reward Model Evaluation},
author={Saumya Malik and Valentina Pyatkin and Sander Land and Jacob Morrison and Noah A. Smith and Hannaneh Hajishirzi and Nathan Lambert},
year={2025},
eprint={2506.01937},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.01937},
}
```
Model card contact: `saumyam at allenai dot org` |