Text Classification
Transformers
PyTorch
English
llama
text-generation-inference
File size: 3,657 Bytes
dc054fe
37256fe
 
 
 
 
 
a2197fc
37256fe
 
 
8bc691c
dc054fe
62f5e51
dc054fe
 
 
62f5e51
c3bf353
 
b9e81f4
dc054fe
 
 
 
c3bf353
664f2a0
c3bf353
 
dc054fe
c3bf353
 
 
 
dc054fe
c3bf353
82dfb4f
 
 
 
0fc8e20
dc054fe
c3bf353
 
dc054fe
c3bf353
62f5e51
dc054fe
c3bf353
dc054fe
c3bf353
 
 
 
dc054fe
c3bf353
 
dc054fe
c3bf353
dc054fe
c3bf353
7d1decb
 
 
 
 
 
 
 
c3bf353
 
dc054fe
c3bf353
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: llama3.1
language:
- en
pipeline_tag: text-classification
datasets:
- allenai/llama-3.1-tulu-3-70b-preference-mixture
- Skywork/Skywork-Reward-Preference-80K-v0.2
base_model:
- meta-llama/Llama-3.1-70B-Instruct
library_name: transformers
---

# Model Card for Llama-3.1-70B-Instruct-RM-RB2

<!-- Provide a quick summary of what the model is/does. -->

Llama-3.1-70B-Instruct-RM-RB2 is one of 7 sets of reward models (RMs) released with Reward Bench 2.
We have released a large set of 70 total reward model checkpoints that we used to develop the benchmark and correlate it with downstream PPO / Best-of-N performance.

[Models](https://huggingface.co/collections/allenai/reward-bench-2-683d2612a4b3e38a3e53bb51) | [Code](https://github.com/allenai/reward-bench) |  [Eval. Dataset v2](https://huggingface.co/datasets/allenai/reward-bench-2) | [Results v2](https://huggingface.co/datasets/allenai/reward-bench-2-results) | [Paper](https://arxiv.org/abs/2506.01937)


## Model Details

The model is a standard classifier, `AutoModelForSequenceClassification` within the HuggingFace ecosystem, trained on binary preference data.
For each model in this batch the main revision is the best model we obtained for that base model, and we include all other training data and hyperparameter combinations in the revisions for further research.

To load a model from a revision, modify the following:

```python
from transformers import AutoModelForSequenceClassification
rm = AutoModelForSequenceClassification("allenai/Llama-3.1-70B-Instruct-RM-RB2", revision="2")
```
<!-- Provide a longer summary of what this model is. -->

| Revision | Training Data | Learning Rate | Num Epochs | RewardBench 2 Score | Factuality | Precise IF | Math | Safety | Focus | Ties |
|----------|---------------|---------------|------------|---------------------|------------|------------|------|--------|-------|------|
| main | Combined | 3e-6 | 1 | 76.1 | 81.3 | 41.9 | 69.9 | 88.4 | 86.5 | 88.3 |
| 1 | Combined | 3e-6 | 1 | 75.7 | 81.7 | 41.2 | 70.5 | 87.3 | 85.5 | 88.1 |
| 2 | Combined | 1e-6 | 1 | 73.1 | 74.7 | 37.5 | 69.4 | 86.2 | 80.6 | 89.9 |

- **Developed by:** Allen Institute for AI
- **Training code:** https://github.com/allenai/open-instruct
- **Language(s) (NLP):** en
- **License:** Llama 3.1 Community License Agreement
- **Finetuned from model:** [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct)

## License

All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
Tülu3 is intended for research and educational use.
For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).

The models have been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms: 
[Gemma Terms of Use](https://ai.google.dev/gemma/terms) and [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) (models were improved using Qwen 2.5).

## Citation 

```
@misc{malik2025rewardbench2advancingreward,
      title={RewardBench 2: Advancing Reward Model Evaluation}, 
      author={Saumya Malik and Valentina Pyatkin and Sander Land and Jacob Morrison and Noah A. Smith and Hannaneh Hajishirzi and Nathan Lambert},
      year={2025},
      eprint={2506.01937},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2506.01937}, 
}
```

Model card contact: `saumyam at allenai dot org`