Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +429 -0
- chat_template.jinja +1 -0
- config.json +147 -0
- configuration_molmoact.py +355 -0
- generation_config.json +6 -0
- image_processing_molmoact.py +959 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +621 -0
- modeling_molmoact.py +2100 -0
- preprocessor_config.json +27 -0
- processing_molmoact.py +465 -0
- processor_config.json +14 -0
- special_tokens_map.json +1944 -0
- tokenizer.json +3 -0
- tokenizer_config.json +3713 -0
- vocab.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<DEPTH_0>": 151667,
|
4 |
+
"<DEPTH_100>": 151767,
|
5 |
+
"<DEPTH_101>": 151768,
|
6 |
+
"<DEPTH_102>": 151769,
|
7 |
+
"<DEPTH_103>": 151770,
|
8 |
+
"<DEPTH_104>": 151771,
|
9 |
+
"<DEPTH_105>": 151772,
|
10 |
+
"<DEPTH_106>": 151773,
|
11 |
+
"<DEPTH_107>": 151774,
|
12 |
+
"<DEPTH_108>": 151775,
|
13 |
+
"<DEPTH_109>": 151776,
|
14 |
+
"<DEPTH_10>": 151677,
|
15 |
+
"<DEPTH_110>": 151777,
|
16 |
+
"<DEPTH_111>": 151778,
|
17 |
+
"<DEPTH_112>": 151779,
|
18 |
+
"<DEPTH_113>": 151780,
|
19 |
+
"<DEPTH_114>": 151781,
|
20 |
+
"<DEPTH_115>": 151782,
|
21 |
+
"<DEPTH_116>": 151783,
|
22 |
+
"<DEPTH_117>": 151784,
|
23 |
+
"<DEPTH_118>": 151785,
|
24 |
+
"<DEPTH_119>": 151786,
|
25 |
+
"<DEPTH_11>": 151678,
|
26 |
+
"<DEPTH_120>": 151787,
|
27 |
+
"<DEPTH_121>": 151788,
|
28 |
+
"<DEPTH_122>": 151789,
|
29 |
+
"<DEPTH_123>": 151790,
|
30 |
+
"<DEPTH_124>": 151791,
|
31 |
+
"<DEPTH_125>": 151792,
|
32 |
+
"<DEPTH_126>": 151793,
|
33 |
+
"<DEPTH_127>": 151794,
|
34 |
+
"<DEPTH_12>": 151679,
|
35 |
+
"<DEPTH_13>": 151680,
|
36 |
+
"<DEPTH_14>": 151681,
|
37 |
+
"<DEPTH_15>": 151682,
|
38 |
+
"<DEPTH_16>": 151683,
|
39 |
+
"<DEPTH_17>": 151684,
|
40 |
+
"<DEPTH_18>": 151685,
|
41 |
+
"<DEPTH_19>": 151686,
|
42 |
+
"<DEPTH_1>": 151668,
|
43 |
+
"<DEPTH_20>": 151687,
|
44 |
+
"<DEPTH_21>": 151688,
|
45 |
+
"<DEPTH_22>": 151689,
|
46 |
+
"<DEPTH_23>": 151690,
|
47 |
+
"<DEPTH_24>": 151691,
|
48 |
+
"<DEPTH_25>": 151692,
|
49 |
+
"<DEPTH_26>": 151693,
|
50 |
+
"<DEPTH_27>": 151694,
|
51 |
+
"<DEPTH_28>": 151695,
|
52 |
+
"<DEPTH_29>": 151696,
|
53 |
+
"<DEPTH_2>": 151669,
|
54 |
+
"<DEPTH_30>": 151697,
|
55 |
+
"<DEPTH_31>": 151698,
|
56 |
+
"<DEPTH_32>": 151699,
|
57 |
+
"<DEPTH_33>": 151700,
|
58 |
+
"<DEPTH_34>": 151701,
|
59 |
+
"<DEPTH_35>": 151702,
|
60 |
+
"<DEPTH_36>": 151703,
|
61 |
+
"<DEPTH_37>": 151704,
|
62 |
+
"<DEPTH_38>": 151705,
|
63 |
+
"<DEPTH_39>": 151706,
|
64 |
+
"<DEPTH_3>": 151670,
|
65 |
+
"<DEPTH_40>": 151707,
|
66 |
+
"<DEPTH_41>": 151708,
|
67 |
+
"<DEPTH_42>": 151709,
|
68 |
+
"<DEPTH_43>": 151710,
|
69 |
+
"<DEPTH_44>": 151711,
|
70 |
+
"<DEPTH_45>": 151712,
|
71 |
+
"<DEPTH_46>": 151713,
|
72 |
+
"<DEPTH_47>": 151714,
|
73 |
+
"<DEPTH_48>": 151715,
|
74 |
+
"<DEPTH_49>": 151716,
|
75 |
+
"<DEPTH_4>": 151671,
|
76 |
+
"<DEPTH_50>": 151717,
|
77 |
+
"<DEPTH_51>": 151718,
|
78 |
+
"<DEPTH_52>": 151719,
|
79 |
+
"<DEPTH_53>": 151720,
|
80 |
+
"<DEPTH_54>": 151721,
|
81 |
+
"<DEPTH_55>": 151722,
|
82 |
+
"<DEPTH_56>": 151723,
|
83 |
+
"<DEPTH_57>": 151724,
|
84 |
+
"<DEPTH_58>": 151725,
|
85 |
+
"<DEPTH_59>": 151726,
|
86 |
+
"<DEPTH_5>": 151672,
|
87 |
+
"<DEPTH_60>": 151727,
|
88 |
+
"<DEPTH_61>": 151728,
|
89 |
+
"<DEPTH_62>": 151729,
|
90 |
+
"<DEPTH_63>": 151730,
|
91 |
+
"<DEPTH_64>": 151731,
|
92 |
+
"<DEPTH_65>": 151732,
|
93 |
+
"<DEPTH_66>": 151733,
|
94 |
+
"<DEPTH_67>": 151734,
|
95 |
+
"<DEPTH_68>": 151735,
|
96 |
+
"<DEPTH_69>": 151736,
|
97 |
+
"<DEPTH_6>": 151673,
|
98 |
+
"<DEPTH_70>": 151737,
|
99 |
+
"<DEPTH_71>": 151738,
|
100 |
+
"<DEPTH_72>": 151739,
|
101 |
+
"<DEPTH_73>": 151740,
|
102 |
+
"<DEPTH_74>": 151741,
|
103 |
+
"<DEPTH_75>": 151742,
|
104 |
+
"<DEPTH_76>": 151743,
|
105 |
+
"<DEPTH_77>": 151744,
|
106 |
+
"<DEPTH_78>": 151745,
|
107 |
+
"<DEPTH_79>": 151746,
|
108 |
+
"<DEPTH_7>": 151674,
|
109 |
+
"<DEPTH_80>": 151747,
|
110 |
+
"<DEPTH_81>": 151748,
|
111 |
+
"<DEPTH_82>": 151749,
|
112 |
+
"<DEPTH_83>": 151750,
|
113 |
+
"<DEPTH_84>": 151751,
|
114 |
+
"<DEPTH_85>": 151752,
|
115 |
+
"<DEPTH_86>": 151753,
|
116 |
+
"<DEPTH_87>": 151754,
|
117 |
+
"<DEPTH_88>": 151755,
|
118 |
+
"<DEPTH_89>": 151756,
|
119 |
+
"<DEPTH_8>": 151675,
|
120 |
+
"<DEPTH_90>": 151757,
|
121 |
+
"<DEPTH_91>": 151758,
|
122 |
+
"<DEPTH_92>": 151759,
|
123 |
+
"<DEPTH_93>": 151760,
|
124 |
+
"<DEPTH_94>": 151761,
|
125 |
+
"<DEPTH_95>": 151762,
|
126 |
+
"<DEPTH_96>": 151763,
|
127 |
+
"<DEPTH_97>": 151764,
|
128 |
+
"<DEPTH_98>": 151765,
|
129 |
+
"<DEPTH_99>": 151766,
|
130 |
+
"<DEPTH_9>": 151676,
|
131 |
+
"<DEPTH_END>": 151666,
|
132 |
+
"<DEPTH_START>": 151665,
|
133 |
+
"<im_col>": 152067,
|
134 |
+
"<im_end>": 152065,
|
135 |
+
"<im_low>": 152069,
|
136 |
+
"<im_patch>": 152066,
|
137 |
+
"<im_start>": 152064,
|
138 |
+
"<tool_call>": 151657,
|
139 |
+
"<|box_end|>": 151649,
|
140 |
+
"<|box_start|>": 151648,
|
141 |
+
"<|endoftext|>": 151643,
|
142 |
+
"<|file_sep|>": 151664,
|
143 |
+
"<|fim_middle|>": 151660,
|
144 |
+
"<|fim_pad|>": 151662,
|
145 |
+
"<|fim_prefix|>": 151659,
|
146 |
+
"<|fim_suffix|>": 151661,
|
147 |
+
"<|im_end|>": 151645,
|
148 |
+
"<|im_start|>": 151644,
|
149 |
+
"<|image_pad|>": 151655,
|
150 |
+
"<|image|>": 152068,
|
151 |
+
"<|object_ref_end|>": 151647,
|
152 |
+
"<|object_ref_start|>": 151646,
|
153 |
+
"<|quad_end|>": 151651,
|
154 |
+
"<|quad_start|>": 151650,
|
155 |
+
"<|repo_name|>": 151663,
|
156 |
+
"<|video_pad|>": 151656,
|
157 |
+
"<|vision_end|>": 151653,
|
158 |
+
"<|vision_pad|>": 151654,
|
159 |
+
"<|vision_start|>": 151652,
|
160 |
+
"|<EXTRA_TOKENS_0>|": 151795,
|
161 |
+
"|<EXTRA_TOKENS_100>|": 151895,
|
162 |
+
"|<EXTRA_TOKENS_101>|": 151896,
|
163 |
+
"|<EXTRA_TOKENS_102>|": 151897,
|
164 |
+
"|<EXTRA_TOKENS_103>|": 151898,
|
165 |
+
"|<EXTRA_TOKENS_104>|": 151899,
|
166 |
+
"|<EXTRA_TOKENS_105>|": 151900,
|
167 |
+
"|<EXTRA_TOKENS_106>|": 151901,
|
168 |
+
"|<EXTRA_TOKENS_107>|": 151902,
|
169 |
+
"|<EXTRA_TOKENS_108>|": 151903,
|
170 |
+
"|<EXTRA_TOKENS_109>|": 151904,
|
171 |
+
"|<EXTRA_TOKENS_10>|": 151805,
|
172 |
+
"|<EXTRA_TOKENS_110>|": 151905,
|
173 |
+
"|<EXTRA_TOKENS_111>|": 151906,
|
174 |
+
"|<EXTRA_TOKENS_112>|": 151907,
|
175 |
+
"|<EXTRA_TOKENS_113>|": 151908,
|
176 |
+
"|<EXTRA_TOKENS_114>|": 151909,
|
177 |
+
"|<EXTRA_TOKENS_115>|": 151910,
|
178 |
+
"|<EXTRA_TOKENS_116>|": 151911,
|
179 |
+
"|<EXTRA_TOKENS_117>|": 151912,
|
180 |
+
"|<EXTRA_TOKENS_118>|": 151913,
|
181 |
+
"|<EXTRA_TOKENS_119>|": 151914,
|
182 |
+
"|<EXTRA_TOKENS_11>|": 151806,
|
183 |
+
"|<EXTRA_TOKENS_120>|": 151915,
|
184 |
+
"|<EXTRA_TOKENS_121>|": 151916,
|
185 |
+
"|<EXTRA_TOKENS_122>|": 151917,
|
186 |
+
"|<EXTRA_TOKENS_123>|": 151918,
|
187 |
+
"|<EXTRA_TOKENS_124>|": 151919,
|
188 |
+
"|<EXTRA_TOKENS_125>|": 151920,
|
189 |
+
"|<EXTRA_TOKENS_126>|": 151921,
|
190 |
+
"|<EXTRA_TOKENS_127>|": 151922,
|
191 |
+
"|<EXTRA_TOKENS_128>|": 151923,
|
192 |
+
"|<EXTRA_TOKENS_129>|": 151924,
|
193 |
+
"|<EXTRA_TOKENS_12>|": 151807,
|
194 |
+
"|<EXTRA_TOKENS_130>|": 151925,
|
195 |
+
"|<EXTRA_TOKENS_131>|": 151926,
|
196 |
+
"|<EXTRA_TOKENS_132>|": 151927,
|
197 |
+
"|<EXTRA_TOKENS_133>|": 151928,
|
198 |
+
"|<EXTRA_TOKENS_134>|": 151929,
|
199 |
+
"|<EXTRA_TOKENS_135>|": 151930,
|
200 |
+
"|<EXTRA_TOKENS_136>|": 151931,
|
201 |
+
"|<EXTRA_TOKENS_137>|": 151932,
|
202 |
+
"|<EXTRA_TOKENS_138>|": 151933,
|
203 |
+
"|<EXTRA_TOKENS_139>|": 151934,
|
204 |
+
"|<EXTRA_TOKENS_13>|": 151808,
|
205 |
+
"|<EXTRA_TOKENS_140>|": 151935,
|
206 |
+
"|<EXTRA_TOKENS_141>|": 151936,
|
207 |
+
"|<EXTRA_TOKENS_142>|": 151937,
|
208 |
+
"|<EXTRA_TOKENS_143>|": 151938,
|
209 |
+
"|<EXTRA_TOKENS_144>|": 151939,
|
210 |
+
"|<EXTRA_TOKENS_145>|": 151940,
|
211 |
+
"|<EXTRA_TOKENS_146>|": 151941,
|
212 |
+
"|<EXTRA_TOKENS_147>|": 151942,
|
213 |
+
"|<EXTRA_TOKENS_148>|": 151943,
|
214 |
+
"|<EXTRA_TOKENS_149>|": 151944,
|
215 |
+
"|<EXTRA_TOKENS_14>|": 151809,
|
216 |
+
"|<EXTRA_TOKENS_150>|": 151945,
|
217 |
+
"|<EXTRA_TOKENS_151>|": 151946,
|
218 |
+
"|<EXTRA_TOKENS_152>|": 151947,
|
219 |
+
"|<EXTRA_TOKENS_153>|": 151948,
|
220 |
+
"|<EXTRA_TOKENS_154>|": 151949,
|
221 |
+
"|<EXTRA_TOKENS_155>|": 151950,
|
222 |
+
"|<EXTRA_TOKENS_156>|": 151951,
|
223 |
+
"|<EXTRA_TOKENS_157>|": 151952,
|
224 |
+
"|<EXTRA_TOKENS_158>|": 151953,
|
225 |
+
"|<EXTRA_TOKENS_159>|": 151954,
|
226 |
+
"|<EXTRA_TOKENS_15>|": 151810,
|
227 |
+
"|<EXTRA_TOKENS_160>|": 151955,
|
228 |
+
"|<EXTRA_TOKENS_161>|": 151956,
|
229 |
+
"|<EXTRA_TOKENS_162>|": 151957,
|
230 |
+
"|<EXTRA_TOKENS_163>|": 151958,
|
231 |
+
"|<EXTRA_TOKENS_164>|": 151959,
|
232 |
+
"|<EXTRA_TOKENS_165>|": 151960,
|
233 |
+
"|<EXTRA_TOKENS_166>|": 151961,
|
234 |
+
"|<EXTRA_TOKENS_167>|": 151962,
|
235 |
+
"|<EXTRA_TOKENS_168>|": 151963,
|
236 |
+
"|<EXTRA_TOKENS_169>|": 151964,
|
237 |
+
"|<EXTRA_TOKENS_16>|": 151811,
|
238 |
+
"|<EXTRA_TOKENS_170>|": 151965,
|
239 |
+
"|<EXTRA_TOKENS_171>|": 151966,
|
240 |
+
"|<EXTRA_TOKENS_172>|": 151967,
|
241 |
+
"|<EXTRA_TOKENS_173>|": 151968,
|
242 |
+
"|<EXTRA_TOKENS_174>|": 151969,
|
243 |
+
"|<EXTRA_TOKENS_175>|": 151970,
|
244 |
+
"|<EXTRA_TOKENS_176>|": 151971,
|
245 |
+
"|<EXTRA_TOKENS_177>|": 151972,
|
246 |
+
"|<EXTRA_TOKENS_178>|": 151973,
|
247 |
+
"|<EXTRA_TOKENS_179>|": 151974,
|
248 |
+
"|<EXTRA_TOKENS_17>|": 151812,
|
249 |
+
"|<EXTRA_TOKENS_180>|": 151975,
|
250 |
+
"|<EXTRA_TOKENS_181>|": 151976,
|
251 |
+
"|<EXTRA_TOKENS_182>|": 151977,
|
252 |
+
"|<EXTRA_TOKENS_183>|": 151978,
|
253 |
+
"|<EXTRA_TOKENS_184>|": 151979,
|
254 |
+
"|<EXTRA_TOKENS_185>|": 151980,
|
255 |
+
"|<EXTRA_TOKENS_186>|": 151981,
|
256 |
+
"|<EXTRA_TOKENS_187>|": 151982,
|
257 |
+
"|<EXTRA_TOKENS_188>|": 151983,
|
258 |
+
"|<EXTRA_TOKENS_189>|": 151984,
|
259 |
+
"|<EXTRA_TOKENS_18>|": 151813,
|
260 |
+
"|<EXTRA_TOKENS_190>|": 151985,
|
261 |
+
"|<EXTRA_TOKENS_191>|": 151986,
|
262 |
+
"|<EXTRA_TOKENS_192>|": 151987,
|
263 |
+
"|<EXTRA_TOKENS_193>|": 151988,
|
264 |
+
"|<EXTRA_TOKENS_194>|": 151989,
|
265 |
+
"|<EXTRA_TOKENS_195>|": 151990,
|
266 |
+
"|<EXTRA_TOKENS_196>|": 151991,
|
267 |
+
"|<EXTRA_TOKENS_197>|": 151992,
|
268 |
+
"|<EXTRA_TOKENS_198>|": 151993,
|
269 |
+
"|<EXTRA_TOKENS_199>|": 151994,
|
270 |
+
"|<EXTRA_TOKENS_19>|": 151814,
|
271 |
+
"|<EXTRA_TOKENS_1>|": 151796,
|
272 |
+
"|<EXTRA_TOKENS_200>|": 151995,
|
273 |
+
"|<EXTRA_TOKENS_201>|": 151996,
|
274 |
+
"|<EXTRA_TOKENS_202>|": 151997,
|
275 |
+
"|<EXTRA_TOKENS_203>|": 151998,
|
276 |
+
"|<EXTRA_TOKENS_204>|": 151999,
|
277 |
+
"|<EXTRA_TOKENS_205>|": 152000,
|
278 |
+
"|<EXTRA_TOKENS_206>|": 152001,
|
279 |
+
"|<EXTRA_TOKENS_207>|": 152002,
|
280 |
+
"|<EXTRA_TOKENS_208>|": 152003,
|
281 |
+
"|<EXTRA_TOKENS_209>|": 152004,
|
282 |
+
"|<EXTRA_TOKENS_20>|": 151815,
|
283 |
+
"|<EXTRA_TOKENS_210>|": 152005,
|
284 |
+
"|<EXTRA_TOKENS_211>|": 152006,
|
285 |
+
"|<EXTRA_TOKENS_212>|": 152007,
|
286 |
+
"|<EXTRA_TOKENS_213>|": 152008,
|
287 |
+
"|<EXTRA_TOKENS_214>|": 152009,
|
288 |
+
"|<EXTRA_TOKENS_215>|": 152010,
|
289 |
+
"|<EXTRA_TOKENS_216>|": 152011,
|
290 |
+
"|<EXTRA_TOKENS_217>|": 152012,
|
291 |
+
"|<EXTRA_TOKENS_218>|": 152013,
|
292 |
+
"|<EXTRA_TOKENS_219>|": 152014,
|
293 |
+
"|<EXTRA_TOKENS_21>|": 151816,
|
294 |
+
"|<EXTRA_TOKENS_220>|": 152015,
|
295 |
+
"|<EXTRA_TOKENS_221>|": 152016,
|
296 |
+
"|<EXTRA_TOKENS_222>|": 152017,
|
297 |
+
"|<EXTRA_TOKENS_223>|": 152018,
|
298 |
+
"|<EXTRA_TOKENS_224>|": 152019,
|
299 |
+
"|<EXTRA_TOKENS_225>|": 152020,
|
300 |
+
"|<EXTRA_TOKENS_226>|": 152021,
|
301 |
+
"|<EXTRA_TOKENS_227>|": 152022,
|
302 |
+
"|<EXTRA_TOKENS_228>|": 152023,
|
303 |
+
"|<EXTRA_TOKENS_229>|": 152024,
|
304 |
+
"|<EXTRA_TOKENS_22>|": 151817,
|
305 |
+
"|<EXTRA_TOKENS_230>|": 152025,
|
306 |
+
"|<EXTRA_TOKENS_231>|": 152026,
|
307 |
+
"|<EXTRA_TOKENS_232>|": 152027,
|
308 |
+
"|<EXTRA_TOKENS_233>|": 152028,
|
309 |
+
"|<EXTRA_TOKENS_234>|": 152029,
|
310 |
+
"|<EXTRA_TOKENS_235>|": 152030,
|
311 |
+
"|<EXTRA_TOKENS_236>|": 152031,
|
312 |
+
"|<EXTRA_TOKENS_237>|": 152032,
|
313 |
+
"|<EXTRA_TOKENS_238>|": 152033,
|
314 |
+
"|<EXTRA_TOKENS_239>|": 152034,
|
315 |
+
"|<EXTRA_TOKENS_23>|": 151818,
|
316 |
+
"|<EXTRA_TOKENS_240>|": 152035,
|
317 |
+
"|<EXTRA_TOKENS_241>|": 152036,
|
318 |
+
"|<EXTRA_TOKENS_242>|": 152037,
|
319 |
+
"|<EXTRA_TOKENS_243>|": 152038,
|
320 |
+
"|<EXTRA_TOKENS_244>|": 152039,
|
321 |
+
"|<EXTRA_TOKENS_245>|": 152040,
|
322 |
+
"|<EXTRA_TOKENS_246>|": 152041,
|
323 |
+
"|<EXTRA_TOKENS_247>|": 152042,
|
324 |
+
"|<EXTRA_TOKENS_248>|": 152043,
|
325 |
+
"|<EXTRA_TOKENS_249>|": 152044,
|
326 |
+
"|<EXTRA_TOKENS_24>|": 151819,
|
327 |
+
"|<EXTRA_TOKENS_250>|": 152045,
|
328 |
+
"|<EXTRA_TOKENS_251>|": 152046,
|
329 |
+
"|<EXTRA_TOKENS_252>|": 152047,
|
330 |
+
"|<EXTRA_TOKENS_253>|": 152048,
|
331 |
+
"|<EXTRA_TOKENS_254>|": 152049,
|
332 |
+
"|<EXTRA_TOKENS_255>|": 152050,
|
333 |
+
"|<EXTRA_TOKENS_256>|": 152051,
|
334 |
+
"|<EXTRA_TOKENS_257>|": 152052,
|
335 |
+
"|<EXTRA_TOKENS_258>|": 152053,
|
336 |
+
"|<EXTRA_TOKENS_259>|": 152054,
|
337 |
+
"|<EXTRA_TOKENS_25>|": 151820,
|
338 |
+
"|<EXTRA_TOKENS_260>|": 152055,
|
339 |
+
"|<EXTRA_TOKENS_261>|": 152056,
|
340 |
+
"|<EXTRA_TOKENS_262>|": 152057,
|
341 |
+
"|<EXTRA_TOKENS_263>|": 152058,
|
342 |
+
"|<EXTRA_TOKENS_264>|": 152059,
|
343 |
+
"|<EXTRA_TOKENS_265>|": 152060,
|
344 |
+
"|<EXTRA_TOKENS_266>|": 152061,
|
345 |
+
"|<EXTRA_TOKENS_267>|": 152062,
|
346 |
+
"|<EXTRA_TOKENS_268>|": 152063,
|
347 |
+
"|<EXTRA_TOKENS_26>|": 151821,
|
348 |
+
"|<EXTRA_TOKENS_27>|": 151822,
|
349 |
+
"|<EXTRA_TOKENS_28>|": 151823,
|
350 |
+
"|<EXTRA_TOKENS_29>|": 151824,
|
351 |
+
"|<EXTRA_TOKENS_2>|": 151797,
|
352 |
+
"|<EXTRA_TOKENS_30>|": 151825,
|
353 |
+
"|<EXTRA_TOKENS_31>|": 151826,
|
354 |
+
"|<EXTRA_TOKENS_32>|": 151827,
|
355 |
+
"|<EXTRA_TOKENS_33>|": 151828,
|
356 |
+
"|<EXTRA_TOKENS_34>|": 151829,
|
357 |
+
"|<EXTRA_TOKENS_35>|": 151830,
|
358 |
+
"|<EXTRA_TOKENS_36>|": 151831,
|
359 |
+
"|<EXTRA_TOKENS_37>|": 151832,
|
360 |
+
"|<EXTRA_TOKENS_38>|": 151833,
|
361 |
+
"|<EXTRA_TOKENS_39>|": 151834,
|
362 |
+
"|<EXTRA_TOKENS_3>|": 151798,
|
363 |
+
"|<EXTRA_TOKENS_40>|": 151835,
|
364 |
+
"|<EXTRA_TOKENS_41>|": 151836,
|
365 |
+
"|<EXTRA_TOKENS_42>|": 151837,
|
366 |
+
"|<EXTRA_TOKENS_43>|": 151838,
|
367 |
+
"|<EXTRA_TOKENS_44>|": 151839,
|
368 |
+
"|<EXTRA_TOKENS_45>|": 151840,
|
369 |
+
"|<EXTRA_TOKENS_46>|": 151841,
|
370 |
+
"|<EXTRA_TOKENS_47>|": 151842,
|
371 |
+
"|<EXTRA_TOKENS_48>|": 151843,
|
372 |
+
"|<EXTRA_TOKENS_49>|": 151844,
|
373 |
+
"|<EXTRA_TOKENS_4>|": 151799,
|
374 |
+
"|<EXTRA_TOKENS_50>|": 151845,
|
375 |
+
"|<EXTRA_TOKENS_51>|": 151846,
|
376 |
+
"|<EXTRA_TOKENS_52>|": 151847,
|
377 |
+
"|<EXTRA_TOKENS_53>|": 151848,
|
378 |
+
"|<EXTRA_TOKENS_54>|": 151849,
|
379 |
+
"|<EXTRA_TOKENS_55>|": 151850,
|
380 |
+
"|<EXTRA_TOKENS_56>|": 151851,
|
381 |
+
"|<EXTRA_TOKENS_57>|": 151852,
|
382 |
+
"|<EXTRA_TOKENS_58>|": 151853,
|
383 |
+
"|<EXTRA_TOKENS_59>|": 151854,
|
384 |
+
"|<EXTRA_TOKENS_5>|": 151800,
|
385 |
+
"|<EXTRA_TOKENS_60>|": 151855,
|
386 |
+
"|<EXTRA_TOKENS_61>|": 151856,
|
387 |
+
"|<EXTRA_TOKENS_62>|": 151857,
|
388 |
+
"|<EXTRA_TOKENS_63>|": 151858,
|
389 |
+
"|<EXTRA_TOKENS_64>|": 151859,
|
390 |
+
"|<EXTRA_TOKENS_65>|": 151860,
|
391 |
+
"|<EXTRA_TOKENS_66>|": 151861,
|
392 |
+
"|<EXTRA_TOKENS_67>|": 151862,
|
393 |
+
"|<EXTRA_TOKENS_68>|": 151863,
|
394 |
+
"|<EXTRA_TOKENS_69>|": 151864,
|
395 |
+
"|<EXTRA_TOKENS_6>|": 151801,
|
396 |
+
"|<EXTRA_TOKENS_70>|": 151865,
|
397 |
+
"|<EXTRA_TOKENS_71>|": 151866,
|
398 |
+
"|<EXTRA_TOKENS_72>|": 151867,
|
399 |
+
"|<EXTRA_TOKENS_73>|": 151868,
|
400 |
+
"|<EXTRA_TOKENS_74>|": 151869,
|
401 |
+
"|<EXTRA_TOKENS_75>|": 151870,
|
402 |
+
"|<EXTRA_TOKENS_76>|": 151871,
|
403 |
+
"|<EXTRA_TOKENS_77>|": 151872,
|
404 |
+
"|<EXTRA_TOKENS_78>|": 151873,
|
405 |
+
"|<EXTRA_TOKENS_79>|": 151874,
|
406 |
+
"|<EXTRA_TOKENS_7>|": 151802,
|
407 |
+
"|<EXTRA_TOKENS_80>|": 151875,
|
408 |
+
"|<EXTRA_TOKENS_81>|": 151876,
|
409 |
+
"|<EXTRA_TOKENS_82>|": 151877,
|
410 |
+
"|<EXTRA_TOKENS_83>|": 151878,
|
411 |
+
"|<EXTRA_TOKENS_84>|": 151879,
|
412 |
+
"|<EXTRA_TOKENS_85>|": 151880,
|
413 |
+
"|<EXTRA_TOKENS_86>|": 151881,
|
414 |
+
"|<EXTRA_TOKENS_87>|": 151882,
|
415 |
+
"|<EXTRA_TOKENS_88>|": 151883,
|
416 |
+
"|<EXTRA_TOKENS_89>|": 151884,
|
417 |
+
"|<EXTRA_TOKENS_8>|": 151803,
|
418 |
+
"|<EXTRA_TOKENS_90>|": 151885,
|
419 |
+
"|<EXTRA_TOKENS_91>|": 151886,
|
420 |
+
"|<EXTRA_TOKENS_92>|": 151887,
|
421 |
+
"|<EXTRA_TOKENS_93>|": 151888,
|
422 |
+
"|<EXTRA_TOKENS_94>|": 151889,
|
423 |
+
"|<EXTRA_TOKENS_95>|": 151890,
|
424 |
+
"|<EXTRA_TOKENS_96>|": 151891,
|
425 |
+
"|<EXTRA_TOKENS_97>|": 151892,
|
426 |
+
"|<EXTRA_TOKENS_98>|": 151893,
|
427 |
+
"|<EXTRA_TOKENS_99>|": 151894,
|
428 |
+
"|<EXTRA_TOKENS_9>|": 151804
|
429 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{% for message in messages %}{%- if (loop.index % 2 == 1 and message['role'].lower() != 'user') or (loop.index % 2 == 0 and message['role'].lower() != 'assistant') -%}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{%- endif -%}{{ message['role'].capitalize() + ': ' }}{% if message['content'] is string %}{{ message['content'] }}{% else %}{% for content in message['content'] %}{% if content['type'] == 'text' %}{{ content['text'] }}{%- if not loop.last -%}{{ ' ' }}{%- endif -%}{% endif %}{% endfor %}{% endif %}{%- if not loop.last -%}{{ ' ' }}{%- endif -%}{% endfor %}{% if add_generation_prompt %}{{ ' Assistant:' }}{% endif %}
|
config.json
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"adapter_config": {
|
3 |
+
"attention_dropout": 0.0,
|
4 |
+
"float32_attention": true,
|
5 |
+
"head_dim": 72,
|
6 |
+
"hidden_act": "silu",
|
7 |
+
"hidden_size": 1152,
|
8 |
+
"image_feature_dropout": 0.0,
|
9 |
+
"image_padding_embed": null,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 18944,
|
12 |
+
"model_type": "",
|
13 |
+
"num_attention_heads": 16,
|
14 |
+
"num_key_value_heads": 16,
|
15 |
+
"residual_dropout": 0.0,
|
16 |
+
"text_hidden_size": 3584,
|
17 |
+
"vit_layers": [
|
18 |
+
-3,
|
19 |
+
-9
|
20 |
+
]
|
21 |
+
},
|
22 |
+
"architectures": [
|
23 |
+
"MolmoActForActionReasoning"
|
24 |
+
],
|
25 |
+
"auto_map": {
|
26 |
+
"AutoConfig": "configuration_molmoact.MolmoActConfig",
|
27 |
+
"AutoModelForImageTextToText": "modeling_molmoact.MolmoActForActionReasoning"
|
28 |
+
},
|
29 |
+
"image_patch_id": 152066,
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"llm_config": {
|
32 |
+
"additional_vocab_size": 128,
|
33 |
+
"attention_dropout": 0.0,
|
34 |
+
"embedding_dropout": 0.0,
|
35 |
+
"head_dim": 128,
|
36 |
+
"hidden_act": "silu",
|
37 |
+
"hidden_size": 3584,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"intermediate_size": 18944,
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"max_position_embeddings": 4096,
|
42 |
+
"model_type": "molmoact_llm",
|
43 |
+
"norm_after": false,
|
44 |
+
"num_attention_heads": 28,
|
45 |
+
"num_hidden_layers": 28,
|
46 |
+
"num_key_value_heads": 4,
|
47 |
+
"qk_norm_type": "olmo",
|
48 |
+
"qkv_bias": true,
|
49 |
+
"residual_dropout": 0.0,
|
50 |
+
"rope_scaling": null,
|
51 |
+
"rope_theta": 1000000.0,
|
52 |
+
"use_cache": true,
|
53 |
+
"use_qk_norm": false,
|
54 |
+
"vocab_size": 152064
|
55 |
+
},
|
56 |
+
"model_type": "molmoact",
|
57 |
+
"n_action_bins": 256,
|
58 |
+
"norm_stats": {
|
59 |
+
"molmoact": {
|
60 |
+
"action": {
|
61 |
+
"max": [
|
62 |
+
0.06042003631591797,
|
63 |
+
0.09417290985584259,
|
64 |
+
0.07019275426864624,
|
65 |
+
0.2616892158985138,
|
66 |
+
0.11751057207584381,
|
67 |
+
0.16968433558940887,
|
68 |
+
1.0
|
69 |
+
],
|
70 |
+
"mean": [
|
71 |
+
0.0005706787342205644,
|
72 |
+
0.0002448957529850304,
|
73 |
+
-3.5987635783385485e-05,
|
74 |
+
0.00021597897284664214,
|
75 |
+
-0.0004896928439848125,
|
76 |
+
-0.000241481073317118,
|
77 |
+
0.5570635199546814
|
78 |
+
],
|
79 |
+
"min": [
|
80 |
+
-0.07434078305959702,
|
81 |
+
-0.07339745759963989,
|
82 |
+
-0.06539416313171387,
|
83 |
+
-0.1688285619020462,
|
84 |
+
-0.10289879888296127,
|
85 |
+
-0.2667275667190552,
|
86 |
+
0.0
|
87 |
+
],
|
88 |
+
"q01": [
|
89 |
+
-0.01538565568625927,
|
90 |
+
-0.021047022193670273,
|
91 |
+
-0.01688069850206375,
|
92 |
+
-0.044314172118902206,
|
93 |
+
-0.03890235349535942,
|
94 |
+
-0.04788423702120781,
|
95 |
+
0.0
|
96 |
+
],
|
97 |
+
"q99": [
|
98 |
+
0.014661382883787155,
|
99 |
+
0.026515591889619827,
|
100 |
+
0.021398313343524933,
|
101 |
+
0.04216696694493294,
|
102 |
+
0.03401297703385353,
|
103 |
+
0.04957397282123566,
|
104 |
+
1.0
|
105 |
+
],
|
106 |
+
"std": [
|
107 |
+
0.005207270849496126,
|
108 |
+
0.007506529800593853,
|
109 |
+
0.006415561307221651,
|
110 |
+
0.013248044066131115,
|
111 |
+
0.010928540490567684,
|
112 |
+
0.014873150736093521,
|
113 |
+
0.49715080857276917
|
114 |
+
]
|
115 |
+
},
|
116 |
+
"num_entries": 1560068
|
117 |
+
}
|
118 |
+
},
|
119 |
+
"tie_word_embeddings": false,
|
120 |
+
"torch_dtype": "bfloat16",
|
121 |
+
"transformers_version": "4.52.3",
|
122 |
+
"use_cache": true,
|
123 |
+
"vit_config": {
|
124 |
+
"attention_dropout": 0.0,
|
125 |
+
"float32_attention": true,
|
126 |
+
"head_dim": 72,
|
127 |
+
"hidden_act": "gelu_pytorch_tanh",
|
128 |
+
"hidden_size": 1152,
|
129 |
+
"image_default_input_size": [
|
130 |
+
378,
|
131 |
+
378
|
132 |
+
],
|
133 |
+
"image_num_pos": 729,
|
134 |
+
"image_patch_size": 14,
|
135 |
+
"initializer_range": 0.02,
|
136 |
+
"intermediate_size": 4304,
|
137 |
+
"layer_norm_eps": 1e-06,
|
138 |
+
"model_type": "molmoact_vit",
|
139 |
+
"num_attention_heads": 16,
|
140 |
+
"num_hidden_layers": 27,
|
141 |
+
"num_key_value_heads": 16,
|
142 |
+
"patch_bias": true,
|
143 |
+
"pre_layernorm": false,
|
144 |
+
"residual_dropout": 0.0,
|
145 |
+
"use_cls_token": false
|
146 |
+
}
|
147 |
+
}
|
configuration_molmoact.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MolmoAct configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
from typing import Tuple, Optional, Dict, Any
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class MolmoActVitConfig(PretrainedConfig):
|
15 |
+
r"""
|
16 |
+
This is the configuration class to store the configuration of a [`MolmoActVisionTransformer`].
|
17 |
+
It is used to instantiate a `MolmoActVisionTransformer` according to the specified arguments,
|
18 |
+
defining the model architecture.
|
19 |
+
|
20 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
21 |
+
documentation from [`PretrainedConfig`] for more information.
|
22 |
+
|
23 |
+
Example:
|
24 |
+
```python
|
25 |
+
>>> from transformers import MolmoActVitConfig, MolmoActVisionTransformer
|
26 |
+
|
27 |
+
>>> # Initializing a MolmoActVitConfig
|
28 |
+
>>> configuration = MolmoActVitConfig()
|
29 |
+
|
30 |
+
>>> # Initializing a MolmoActVisionTransformer (with random weights)
|
31 |
+
>>> model = MolmoActVisionTransformer(configuration)
|
32 |
+
|
33 |
+
>>> # Accessing the model configuration
|
34 |
+
>>> configuration = model.config
|
35 |
+
```"""
|
36 |
+
|
37 |
+
model_type = "molmoact_vit"
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
hidden_size: int = 1152,
|
42 |
+
intermediate_size: int = 4304,
|
43 |
+
num_hidden_layers: int = 27,
|
44 |
+
num_attention_heads: int = 16,
|
45 |
+
num_key_value_heads: int = 16,
|
46 |
+
head_dim: int = 72,
|
47 |
+
hidden_act: str = "gelu_pytorch_tanh",
|
48 |
+
layer_norm_eps: float = 1e-6,
|
49 |
+
image_default_input_size: Tuple[int, int] = (378, 378),
|
50 |
+
image_patch_size: int = 14,
|
51 |
+
image_num_pos: int = 577,
|
52 |
+
attention_dropout: float = 0.0,
|
53 |
+
residual_dropout: float = 0.0,
|
54 |
+
initializer_range: float = 0.02,
|
55 |
+
float32_attention: bool = True,
|
56 |
+
use_cls_token: bool = False, # True for OpenCLIP
|
57 |
+
patch_bias: bool = True, # False for OpenCLIP
|
58 |
+
pre_layernorm: bool = False, # True for OpenCLIP
|
59 |
+
**kwargs,
|
60 |
+
):
|
61 |
+
super().__init__(**kwargs)
|
62 |
+
self.hidden_size = hidden_size
|
63 |
+
self.intermediate_size = intermediate_size
|
64 |
+
self.num_hidden_layers = num_hidden_layers
|
65 |
+
self.num_attention_heads = num_attention_heads
|
66 |
+
self.num_key_value_heads = num_key_value_heads
|
67 |
+
self.head_dim = head_dim
|
68 |
+
self.hidden_act = hidden_act
|
69 |
+
self.layer_norm_eps = layer_norm_eps
|
70 |
+
self.image_default_input_size = image_default_input_size
|
71 |
+
self.image_patch_size = image_patch_size
|
72 |
+
self.image_num_pos = image_num_pos
|
73 |
+
self.attention_dropout = attention_dropout
|
74 |
+
self.residual_dropout = residual_dropout
|
75 |
+
self.initializer_range = initializer_range
|
76 |
+
self.float32_attention = float32_attention
|
77 |
+
self.use_cls_token = use_cls_token
|
78 |
+
self.patch_bias = patch_bias
|
79 |
+
self.pre_layernorm = pre_layernorm
|
80 |
+
|
81 |
+
@property
|
82 |
+
def image_num_patch(self):
|
83 |
+
h, w = self.image_default_input_size
|
84 |
+
return h // self.image_patch_size, w // self.image_patch_size
|
85 |
+
|
86 |
+
|
87 |
+
class MolmoActAdapterConfig(PretrainedConfig):
|
88 |
+
r"""
|
89 |
+
This is the configuration class to store the configuration of MolmoActAdapter. With MolmoActVitConfig,
|
90 |
+
It is used to instantiate an MolmoActVisionBackbone according to the specified arguments,
|
91 |
+
defining the model architecture.
|
92 |
+
|
93 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
94 |
+
documentation from [`PretrainedConfig`] for more information.
|
95 |
+
|
96 |
+
Example:
|
97 |
+
|
98 |
+
```python
|
99 |
+
>>> from transformers import MolmoActVitConfig, MolmoActAdapterConfig, MolmoActVisionBackbone
|
100 |
+
|
101 |
+
>>> # Initializing a MolmoActVitConfig and a MolmoActAdapterConfig
|
102 |
+
>>> vit_config = MolmoActVitConfig()
|
103 |
+
>>> adapter_config = MolmoPoolingConfig()
|
104 |
+
|
105 |
+
>>> # Initializing a MolmoActVisionBackbone (with random weights)
|
106 |
+
>>> model = MolmoActVisionBackbone(vit_config, adapter_config)
|
107 |
+
|
108 |
+
>>> # Accessing the model configuration
|
109 |
+
>>> vit_configuration = model.vit_config
|
110 |
+
>>> adapter_configuration = model.adapter_config
|
111 |
+
```"""
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vit_layers: Tuple = (-3, -9),
|
116 |
+
hidden_size: int = 1152,
|
117 |
+
num_attention_heads: int = 16,
|
118 |
+
num_key_value_heads: int = 16,
|
119 |
+
head_dim: int = 72,
|
120 |
+
float32_attention: bool = True,
|
121 |
+
attention_dropout: float = 0.0,
|
122 |
+
residual_dropout: float = 0.0,
|
123 |
+
hidden_act: str = "silu",
|
124 |
+
intermediate_size: int = 18944,
|
125 |
+
text_hidden_size: int = 3584,
|
126 |
+
image_feature_dropout: float = 0.0,
|
127 |
+
initializer_range: float = 0.02,
|
128 |
+
# pooling_mode: str = "indices", # "indices" (SigLIP) or "2x2_attention" (OpenCLIP)
|
129 |
+
image_padding_embed: Optional[str] = None, # e.g. "pad_and_partial_pad"
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__(**kwargs)
|
133 |
+
self.vit_layers = vit_layers
|
134 |
+
self.hidden_size = hidden_size
|
135 |
+
self.num_attention_heads = num_attention_heads
|
136 |
+
self.num_key_value_heads = num_key_value_heads
|
137 |
+
self.head_dim = head_dim
|
138 |
+
self.float32_attention = float32_attention
|
139 |
+
self.attention_dropout = attention_dropout
|
140 |
+
self.residual_dropout = residual_dropout
|
141 |
+
self.hidden_act = hidden_act
|
142 |
+
self.intermediate_size = intermediate_size
|
143 |
+
self.text_hidden_size = text_hidden_size
|
144 |
+
self.image_feature_dropout = image_feature_dropout
|
145 |
+
self.initializer_range = initializer_range
|
146 |
+
# self.pooling_mode = pooling_mode
|
147 |
+
self.image_padding_embed = image_padding_embed
|
148 |
+
|
149 |
+
|
150 |
+
class MolmoActLlmConfig(PretrainedConfig):
|
151 |
+
r"""
|
152 |
+
This is the configuration class to store the configuration of a [`MolmoActLlm`]. It is used to instantiate a
|
153 |
+
`MolmoActLlm` according to the specified arguments, defining the model architecture.
|
154 |
+
|
155 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
156 |
+
documentation from [`PretrainedConfig`] for more information.
|
157 |
+
|
158 |
+
Example:
|
159 |
+
```python
|
160 |
+
>>> from transformers import MolmoActLlmConfig, MolmoActLlm
|
161 |
+
|
162 |
+
>>> # Initializing a MolmoActLlmConfig
|
163 |
+
>>> configuration = MolmoActLlmConfig()
|
164 |
+
|
165 |
+
>>> # Initializing a MolmoActLlm (with random weights)
|
166 |
+
>>> model = MolmoActLlm(configuration)
|
167 |
+
|
168 |
+
>>> # Accessing the model configuration
|
169 |
+
>>> configuration = model.config
|
170 |
+
```"""
|
171 |
+
|
172 |
+
model_type = "molmoact_llm"
|
173 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
174 |
+
base_model_tp_plan = {
|
175 |
+
"blocks.*.self_attn.att_proj": "colwise",
|
176 |
+
"blocks.*.self_attn.attn_out": "rowwise",
|
177 |
+
"blocks.*.mlp.ff_proj": "colwise",
|
178 |
+
"blocks.*.mlp.ff_out": "rowwise",
|
179 |
+
}
|
180 |
+
base_model_pp_plan = {
|
181 |
+
"wte": (["input_ids"], ["inputs_embeds"]),
|
182 |
+
"blocks": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
183 |
+
"ln_f": (["hidden_states"], ["hidden_states"]),
|
184 |
+
}
|
185 |
+
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
hidden_size: int = 3584,
|
189 |
+
num_attention_heads: int = 28,
|
190 |
+
num_key_value_heads: Optional[int] = 4,
|
191 |
+
head_dim: int = 128,
|
192 |
+
vocab_size: int = 152064,
|
193 |
+
additional_vocab_size: int = 128,
|
194 |
+
qkv_bias: bool = True,
|
195 |
+
num_hidden_layers: int = 48,
|
196 |
+
intermediate_size: int = 18944,
|
197 |
+
hidden_act: str = "silu",
|
198 |
+
embedding_dropout: float=0.0,
|
199 |
+
attention_dropout: float=0.0,
|
200 |
+
residual_dropout: float = 0.0,
|
201 |
+
max_position_embeddings: int = 4096,
|
202 |
+
rope_theta: float = 1000000.0,
|
203 |
+
rope_scaling: Dict[str, Any] = None,
|
204 |
+
use_qk_norm: bool = False,
|
205 |
+
qk_norm_type: str = "olmo",
|
206 |
+
layer_norm_eps: int = 1e-6,
|
207 |
+
norm_after: bool = False,
|
208 |
+
initializer_range: float = 0.02,
|
209 |
+
use_cache=True,
|
210 |
+
tie_word_embeddings=False,
|
211 |
+
**kwargs,
|
212 |
+
):
|
213 |
+
super().__init__(
|
214 |
+
tie_word_embeddings=tie_word_embeddings,
|
215 |
+
**kwargs
|
216 |
+
)
|
217 |
+
self.hidden_size = hidden_size
|
218 |
+
self.num_attention_heads = num_attention_heads
|
219 |
+
if num_key_value_heads is None:
|
220 |
+
num_key_value_heads = num_attention_heads
|
221 |
+
self.num_key_value_heads = num_key_value_heads
|
222 |
+
self.head_dim = head_dim
|
223 |
+
self.vocab_size = vocab_size
|
224 |
+
self.additional_vocab_size = additional_vocab_size
|
225 |
+
self.qkv_bias = qkv_bias
|
226 |
+
self.num_hidden_layers = num_hidden_layers
|
227 |
+
self.intermediate_size = intermediate_size
|
228 |
+
self.hidden_act = hidden_act
|
229 |
+
self.embedding_dropout = embedding_dropout
|
230 |
+
self.attention_dropout = attention_dropout
|
231 |
+
self.residual_dropout = residual_dropout
|
232 |
+
self.max_position_embeddings = max_position_embeddings
|
233 |
+
self.rope_theta = rope_theta
|
234 |
+
self.rope_scaling = rope_scaling
|
235 |
+
self.use_qk_norm = use_qk_norm
|
236 |
+
self.qk_norm_type = qk_norm_type
|
237 |
+
self.layer_norm_eps = layer_norm_eps
|
238 |
+
self.norm_after = norm_after
|
239 |
+
self.initializer_range = initializer_range
|
240 |
+
self.use_cache = use_cache
|
241 |
+
|
242 |
+
# Validate the correctness of rotary position embeddings parameters
|
243 |
+
rope_config_validation(self)
|
244 |
+
|
245 |
+
|
246 |
+
class MolmoActConfig(PretrainedConfig):
|
247 |
+
r"""
|
248 |
+
This is the configuration class to store the configuration of a [`MolmoActForActionReasoning`].
|
249 |
+
It is used to instantiate an MolmoAct model according to the specified arguments, defining the model architecture.
|
250 |
+
|
251 |
+
Example:
|
252 |
+
|
253 |
+
```python
|
254 |
+
>>> from transformers import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig
|
255 |
+
|
256 |
+
>>> # Initializing a MolmoActVitConfig
|
257 |
+
>>> vit_config = MolmoActVitConfig()
|
258 |
+
|
259 |
+
>>> # Initializing a MolmoActAdapterConfig
|
260 |
+
>>> adapter_config = MolmoActAdapterConfig()
|
261 |
+
|
262 |
+
>>> # Initializing a MolmoActLlmConfig
|
263 |
+
>>> llm_config = MolmoActLlmConfig()
|
264 |
+
|
265 |
+
>>> # Initializing a MolmoActConfig
|
266 |
+
>>> configuration = MolmoActConfig(vit_config, adapter_config, llm_config, image_patch_id=152069)
|
267 |
+
|
268 |
+
>>> # Initializing a model
|
269 |
+
>>> model = MolmoActForActionReasoning(configuration)
|
270 |
+
|
271 |
+
>>> # Accessing the model configuration
|
272 |
+
>>> configuration = model.config
|
273 |
+
```"""
|
274 |
+
|
275 |
+
model_type = "molmoact"
|
276 |
+
sub_configs = {
|
277 |
+
"llm_config": MolmoActLlmConfig,
|
278 |
+
"vit_config": MolmoActVitConfig,
|
279 |
+
"adapter_config": MolmoActAdapterConfig,
|
280 |
+
}
|
281 |
+
|
282 |
+
def __init__(
|
283 |
+
self,
|
284 |
+
vit_config: MolmoActVitConfig = None,
|
285 |
+
adapter_config: MolmoActAdapterConfig = None,
|
286 |
+
llm_config: MolmoActLlmConfig = None,
|
287 |
+
image_patch_id: int = None,
|
288 |
+
initializer_range: float = 0.02,
|
289 |
+
n_action_bins: int = 256,
|
290 |
+
norm_stats: dict = {},
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
super().__init__(**kwargs)
|
294 |
+
if vit_config is None:
|
295 |
+
self.vit_config = MolmoActVitConfig()
|
296 |
+
elif isinstance(vit_config, dict):
|
297 |
+
self.vit_config = MolmoActVitConfig(**vit_config)
|
298 |
+
else:
|
299 |
+
self.vit_config = vit_config
|
300 |
+
if adapter_config is None:
|
301 |
+
self.adapter_config = MolmoActAdapterConfig()
|
302 |
+
elif isinstance(adapter_config, dict):
|
303 |
+
self.adapter_config = MolmoActAdapterConfig(**adapter_config)
|
304 |
+
else:
|
305 |
+
self.adapter_config = adapter_config
|
306 |
+
if llm_config is None:
|
307 |
+
self.llm_config = MolmoActLlmConfig()
|
308 |
+
elif isinstance(llm_config, dict):
|
309 |
+
self.llm_config = MolmoActLlmConfig(**llm_config)
|
310 |
+
else:
|
311 |
+
self.llm_config = llm_config
|
312 |
+
self.image_patch_id = image_patch_id
|
313 |
+
self.initializer_range = initializer_range
|
314 |
+
|
315 |
+
self.n_action_bins = n_action_bins
|
316 |
+
self.norm_stats = norm_stats
|
317 |
+
|
318 |
+
@property
|
319 |
+
def image_num_patch(self):
|
320 |
+
assert self.vit_config is not None
|
321 |
+
return self.vit_config.image_num_patch
|
322 |
+
|
323 |
+
@property
|
324 |
+
def num_attention_heads(self):
|
325 |
+
return self.llm_config.num_attention_heads
|
326 |
+
|
327 |
+
@property
|
328 |
+
def num_key_value_heads(self):
|
329 |
+
return self.llm_config.num_key_value_heads
|
330 |
+
|
331 |
+
@property
|
332 |
+
def head_dim(self):
|
333 |
+
return self.llm_config.head_dim
|
334 |
+
|
335 |
+
@property
|
336 |
+
def num_hidden_layers(self):
|
337 |
+
return self.llm_config.num_hidden_layers
|
338 |
+
|
339 |
+
@property
|
340 |
+
def hidden_size(self):
|
341 |
+
return self.llm_config.hidden_size
|
342 |
+
|
343 |
+
@property
|
344 |
+
def vocab_size(self):
|
345 |
+
return self.llm_config.vocab_size
|
346 |
+
|
347 |
+
@property
|
348 |
+
def max_position_embeddings(self):
|
349 |
+
return self.llm_config.max_position_embeddings
|
350 |
+
|
351 |
+
|
352 |
+
MolmoActVitConfig.register_for_auto_class()
|
353 |
+
MolmoActAdapterConfig.register_for_auto_class()
|
354 |
+
MolmoActLlmConfig.register_for_auto_class()
|
355 |
+
MolmoActConfig.register_for_auto_class()
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"eos_token_id": 151643,
|
4 |
+
"pad_token_id": 151643,
|
5 |
+
"transformers_version": "4.52.3"
|
6 |
+
}
|
image_processing_molmoact.py
ADDED
@@ -0,0 +1,959 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Image processor class for MolmoAct"""
|
2 |
+
from typing import TYPE_CHECKING, Tuple, List, Optional, Union, Dict, Any
|
3 |
+
import numpy as np
|
4 |
+
import einops
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms
|
7 |
+
from torchvision.transforms import InterpolationMode
|
8 |
+
from torchvision.transforms.functional import convert_image_dtype
|
9 |
+
|
10 |
+
from transformers.image_utils import (
|
11 |
+
OPENAI_CLIP_MEAN,
|
12 |
+
OPENAI_CLIP_STD,
|
13 |
+
ChannelDimension,
|
14 |
+
ImageInput,
|
15 |
+
is_valid_image,
|
16 |
+
valid_images,
|
17 |
+
to_numpy_array,
|
18 |
+
)
|
19 |
+
from transformers.image_transforms import convert_to_rgb, to_channel_dimension_format
|
20 |
+
from transformers.processing_utils import ImagesKwargs
|
21 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
22 |
+
from transformers.utils import logging
|
23 |
+
from transformers.feature_extraction_utils import BatchFeature
|
24 |
+
from transformers.utils import TensorType, logging
|
25 |
+
|
26 |
+
|
27 |
+
if TYPE_CHECKING:
|
28 |
+
from transformers.utils import TensorType, logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def is_multi_image(image: Union[ImageInput, List[ImageInput]]) -> bool:
|
35 |
+
return isinstance(image, (list, tuple))
|
36 |
+
|
37 |
+
|
38 |
+
def make_batched_images(images) -> List[ImageInput]:
|
39 |
+
"""
|
40 |
+
Accepts images in list or nested list format.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
44 |
+
The input image.
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
list: A list of images or a list of lists of images.
|
48 |
+
"""
|
49 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
50 |
+
return images
|
51 |
+
|
52 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
53 |
+
return images
|
54 |
+
|
55 |
+
elif is_valid_image(images):
|
56 |
+
return [images]
|
57 |
+
|
58 |
+
raise ValueError(f"Could not make batched images from {images}")
|
59 |
+
|
60 |
+
|
61 |
+
def normalize_image(image: np.ndarray, normalize_mode: str) -> np.ndarray:
|
62 |
+
if normalize_mode == "openai":
|
63 |
+
image -= np.array(OPENAI_CLIP_MEAN, dtype=np.float32)[None, None, :]
|
64 |
+
image /= np.array(OPENAI_CLIP_STD, dtype=np.float32)[None, None, :]
|
65 |
+
elif normalize_mode == "siglip":
|
66 |
+
image = np.asarray(-1.0, dtype=np.float32) + image * np.asarray(2.0, dtype=np.float32)
|
67 |
+
elif normalize_mode == "dino":
|
68 |
+
image -= np.array([0.485, 0.456, 0.406], dtype=np.float32)[None, None, :]
|
69 |
+
image /= np.array([0.229, 0.224, 0.225], dtype=np.float32)[None, None, :]
|
70 |
+
else:
|
71 |
+
raise NotImplementedError(normalize_mode)
|
72 |
+
return image
|
73 |
+
|
74 |
+
|
75 |
+
# Helper to ensure output_size is a 2-tuple of built-in Python ints
|
76 |
+
def _ensure_pyint_size2(size):
|
77 |
+
"""
|
78 |
+
Ensure `size` is a 2-tuple of built-in Python ints.
|
79 |
+
Accepts int, list/tuple, or numpy array of length 1 or 2.
|
80 |
+
"""
|
81 |
+
import numpy as np
|
82 |
+
# If it's an array-like, normalize to length-2 tuple
|
83 |
+
if isinstance(size, (list, tuple, np.ndarray)):
|
84 |
+
if len(size) == 2:
|
85 |
+
return (int(size[0]), int(size[1]))
|
86 |
+
elif len(size) == 1:
|
87 |
+
s = int(size[0])
|
88 |
+
return (s, s)
|
89 |
+
else:
|
90 |
+
# Fallback: try to interpret as square size using first element
|
91 |
+
s = int(size[0])
|
92 |
+
return (s, s)
|
93 |
+
# Scalar → square size
|
94 |
+
s = int(size)
|
95 |
+
return (s, s)
|
96 |
+
|
97 |
+
|
98 |
+
def resize_and_pad(
|
99 |
+
image,
|
100 |
+
desired_output_size,
|
101 |
+
resize_method="torch-bilinear",
|
102 |
+
pad_value=0,
|
103 |
+
):
|
104 |
+
"""Resize an image while padding to preserve uts aspect ratio."""
|
105 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
106 |
+
desired_height, desired_width = desired_output_size
|
107 |
+
height, width = image.shape[:2]
|
108 |
+
|
109 |
+
# Cast into float32 since the training code did this in float32 and it (very rarely) effects
|
110 |
+
# the results after rounding.
|
111 |
+
image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
|
112 |
+
image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
|
113 |
+
image_scale = min(image_scale_x, image_scale_y)
|
114 |
+
scaled_height = int(np.array(height, np.float32) * image_scale)
|
115 |
+
scaled_width = int(np.array(width, np.float32) * image_scale)
|
116 |
+
|
117 |
+
if resize_method in ["torch-bilinear"]:
|
118 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
119 |
+
image = convert_image_dtype(image) # resize in float32 to match the training code
|
120 |
+
mode = InterpolationMode.BILINEAR
|
121 |
+
image = torchvision.transforms.Resize([scaled_height, scaled_width], mode, antialias=True)(image)
|
122 |
+
image = torch.clip(image, 0.0, 1.0)
|
123 |
+
image = torch.permute(image, [1, 2, 0]).numpy()
|
124 |
+
else:
|
125 |
+
raise NotImplementedError(resize_method)
|
126 |
+
|
127 |
+
top_pad = (desired_height - scaled_height) // 2
|
128 |
+
left_pad = (desired_width - scaled_width) // 2
|
129 |
+
padding = [
|
130 |
+
[top_pad, desired_height - scaled_height - top_pad],
|
131 |
+
[left_pad, desired_width - scaled_width - left_pad],
|
132 |
+
[0, 0]
|
133 |
+
]
|
134 |
+
image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
|
135 |
+
image = np.pad(image, padding, constant_values=pad_value)
|
136 |
+
return image, image_mask
|
137 |
+
|
138 |
+
|
139 |
+
def metaclip_resize(image, desired_output_size):
|
140 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
141 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
142 |
+
if torch.is_floating_point(image):
|
143 |
+
image = torchvision.transforms.Resize(
|
144 |
+
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
|
145 |
+
image = torch.clip(image, 0.0, 1.0)
|
146 |
+
else:
|
147 |
+
assert image.dtype == torch.uint8, "Expected float images or uint8 images, but got {}".format(image.dtype)
|
148 |
+
image = torchvision.transforms.Resize(
|
149 |
+
desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
|
150 |
+
image = image.to(torch.float32)
|
151 |
+
image = torch.clip(image, 0, 255)
|
152 |
+
image = image / 255.0
|
153 |
+
resized = torch.permute(image, [1, 2, 0]).numpy()
|
154 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
155 |
+
return resized, image_mask
|
156 |
+
|
157 |
+
|
158 |
+
def siglip_resize_and_pad(
|
159 |
+
image: np.ndarray,
|
160 |
+
desired_output_size: Tuple[int, int],
|
161 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
162 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
163 |
+
if len(image.shape) == 3:
|
164 |
+
is_video = False
|
165 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
166 |
+
else:
|
167 |
+
is_video = True
|
168 |
+
image = torch.permute(torch.from_numpy(image), [0, 3, 1, 2])
|
169 |
+
dtype = image.dtype
|
170 |
+
if torch.is_floating_point(image):
|
171 |
+
in_min = 0.0
|
172 |
+
in_max = 1.0
|
173 |
+
resized = torchvision.transforms.Resize(
|
174 |
+
desired_output_size,
|
175 |
+
InterpolationMode.BILINEAR,
|
176 |
+
antialias=False,
|
177 |
+
)(image)
|
178 |
+
resized = torch.clip(resized, 0.0, 1.0).to(dtype)
|
179 |
+
else:
|
180 |
+
assert image.dtype == torch.uint8, "SigLIP expects float images or uint8 images, but got {}".format(image.dtype)
|
181 |
+
in_min = 0.0
|
182 |
+
in_max = 255.0
|
183 |
+
resized = torchvision.transforms.Resize(
|
184 |
+
desired_output_size,
|
185 |
+
InterpolationMode.BILINEAR,
|
186 |
+
antialias=False,
|
187 |
+
)(image)
|
188 |
+
resized = torch.clip(resized, 0, 255).to(dtype)
|
189 |
+
|
190 |
+
resized = resized.to(torch.float32)
|
191 |
+
resized = (resized - in_min) / (in_max - in_min)
|
192 |
+
|
193 |
+
if is_video:
|
194 |
+
resized = torch.permute(resized, [0, 2, 3, 1]).numpy()
|
195 |
+
image_mask = None
|
196 |
+
else:
|
197 |
+
resized = torch.permute(resized, [1, 2, 0]).numpy()
|
198 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
199 |
+
|
200 |
+
return resized, image_mask
|
201 |
+
|
202 |
+
|
203 |
+
def dino_resize_and_pad(
|
204 |
+
image: np.ndarray,
|
205 |
+
desired_output_size: Tuple[int, int],
|
206 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
207 |
+
desired_output_size = _ensure_pyint_size2(desired_output_size)
|
208 |
+
image = torch.permute(torch.from_numpy(image), [2, 0, 1])
|
209 |
+
dtype = image.dtype
|
210 |
+
if torch.is_floating_point(image):
|
211 |
+
resized = torchvision.transforms.Resize(
|
212 |
+
desired_output_size,
|
213 |
+
InterpolationMode.BICUBIC,
|
214 |
+
antialias=True,
|
215 |
+
)(image)
|
216 |
+
resized = torch.clip(resized, 0.0, 1.0).to(torch.float32)
|
217 |
+
else:
|
218 |
+
assert image.dtype == torch.uint8, "DINOv2 expects float images or uint8 images, but got {}".format(image.dtype)
|
219 |
+
resized = torchvision.transforms.Resize(
|
220 |
+
desired_output_size,
|
221 |
+
InterpolationMode.BICUBIC,
|
222 |
+
antialias=True,
|
223 |
+
)(image)
|
224 |
+
resized = torch.clip(resized, 0, 255).to(torch.float32)
|
225 |
+
resized = resized / 255.0
|
226 |
+
|
227 |
+
resized = torch.permute(resized, [1, 2, 0]).numpy()
|
228 |
+
image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
|
229 |
+
|
230 |
+
return resized, image_mask
|
231 |
+
|
232 |
+
|
233 |
+
def resize_image(
|
234 |
+
image: np.ndarray,
|
235 |
+
resize_mode: str,
|
236 |
+
output_size: Tuple[int, int],
|
237 |
+
pad_value: float,
|
238 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
239 |
+
if resize_mode == "siglip":
|
240 |
+
return siglip_resize_and_pad(image, output_size)
|
241 |
+
elif resize_mode == "dino":
|
242 |
+
return dino_resize_and_pad(image, output_size)
|
243 |
+
elif resize_mode == "metaclip":
|
244 |
+
return metaclip_resize(image, output_size)
|
245 |
+
else:
|
246 |
+
resize = "torch-bilinear" if resize_mode == "default" else resize_mode
|
247 |
+
return resize_and_pad(
|
248 |
+
image, output_size, resize_method=resize, pad_value=pad_value,
|
249 |
+
)
|
250 |
+
|
251 |
+
|
252 |
+
def select_tiling(h, w, patch_size, max_num_crops):
|
253 |
+
"""Divide in image of size [w, h] in up to max_num_patches of size patch_size"""
|
254 |
+
original_size = np.stack([h, w]) # [1, 2]
|
255 |
+
original_res = h * w
|
256 |
+
tilings = []
|
257 |
+
for i in range(1, max_num_crops + 1):
|
258 |
+
for j in range(1, max_num_crops + 1):
|
259 |
+
if i*j <= max_num_crops:
|
260 |
+
tilings.append((i, j))
|
261 |
+
# sort so argmin and argmax favour smaller tilings in the event of a tie
|
262 |
+
tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
|
263 |
+
candidate_tilings = np.array(tilings, dtype=np.int32) # [n_resolutions, 2]
|
264 |
+
candidate_resolutions = candidate_tilings * patch_size # [n_resolutions, 2]
|
265 |
+
|
266 |
+
# How much we would need to scale the image to fit exactly in each tiling
|
267 |
+
original_size = np.stack([h, w], dtype=np.float32) # [1, 2]
|
268 |
+
|
269 |
+
# The original size can be zero in rare cases if the image is smaller than the margin
|
270 |
+
# In those cases letting the scale become infinite means the tiling is based on the
|
271 |
+
# other side, or falls back to the smallest tiling
|
272 |
+
with np.errstate(divide='ignore'):
|
273 |
+
required_scale_d = candidate_resolutions.astype(np.float32) / original_size,
|
274 |
+
required_scale = np.min(required_scale_d, axis=-1, keepdims=True) # [n_resolutions, 1]
|
275 |
+
if np.all(required_scale < 1):
|
276 |
+
# We are forced to downscale, so try to minimize the amount of downscaling
|
277 |
+
ix = np.argmax(required_scale)
|
278 |
+
else:
|
279 |
+
# Pick the resolution that required the least upscaling so that it most closely fits the image
|
280 |
+
required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
|
281 |
+
ix = np.argmin(required_scale)
|
282 |
+
return candidate_tilings[ix]
|
283 |
+
|
284 |
+
|
285 |
+
def build_resized_image(
|
286 |
+
image: np.ndarray,
|
287 |
+
resize_mode: str,
|
288 |
+
normalized_mode: str,
|
289 |
+
base_image_input_size: List[int],
|
290 |
+
pad_value: float,
|
291 |
+
image_patch_size: int,
|
292 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
293 |
+
resized, resized_mask = resize_image(
|
294 |
+
image, resize_mode, base_image_input_size, pad_value,
|
295 |
+
)
|
296 |
+
resized = normalize_image(resized, normalized_mode)
|
297 |
+
if len(resized.shape) == 3:
|
298 |
+
resized = np.expand_dims(resized, 0)
|
299 |
+
resized_mask = np.expand_dims(resized_mask, 0)
|
300 |
+
crop_patch_w = base_image_input_size[1] // image_patch_size
|
301 |
+
crop_patch_h = base_image_input_size[0] // image_patch_size
|
302 |
+
resize_idx = np.arange(crop_patch_w*crop_patch_h).reshape([crop_patch_h, crop_patch_w])
|
303 |
+
return resized, resized_mask, resize_idx
|
304 |
+
|
305 |
+
|
306 |
+
def build_overlapping_crops(
|
307 |
+
image: np.ndarray,
|
308 |
+
resize_mode: str,
|
309 |
+
normalize_mode: str,
|
310 |
+
max_crops: int,
|
311 |
+
overlap_margins: List[int],
|
312 |
+
base_image_input_size: List[int],
|
313 |
+
pad_value: float,
|
314 |
+
image_patch_size: int,
|
315 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
316 |
+
"""Decompose an image into a set of overlapping crops
|
317 |
+
|
318 |
+
:return crop_arr: [n_crops, h, w, 3] The crops
|
319 |
+
:return mask_arr: [n_crops, h, w] The padding masks
|
320 |
+
:return patch_idx: [overlap_patch_h, overlap_patch_w] For each patch in the resized image
|
321 |
+
the crops were extracted from, what patch in `crop_arr` it corresponds to
|
322 |
+
"""
|
323 |
+
original_image_h, original_image_w = image.shape[:2]
|
324 |
+
crop_size = base_image_input_size[0]
|
325 |
+
assert base_image_input_size[0] == base_image_input_size[1]
|
326 |
+
|
327 |
+
left_margin, right_margin = overlap_margins
|
328 |
+
total_margin_pixels = image_patch_size * (right_margin + left_margin) # pixels removed per dim
|
329 |
+
crop_patches = base_image_input_size[0] // image_patch_size # patches per crop dim
|
330 |
+
crop_window_patches = crop_patches - (right_margin + left_margin) # usable patches
|
331 |
+
crop_window_size = crop_window_patches * image_patch_size
|
332 |
+
crop_patch_w = base_image_input_size[1] // image_patch_size
|
333 |
+
crop_patch_h = base_image_input_size[0] // image_patch_size
|
334 |
+
original_image_h, original_image_w = image.shape[:2]
|
335 |
+
crop_size = base_image_input_size[0]
|
336 |
+
|
337 |
+
# Decide how to tile the image, to account for the overlap margins we compute the tiling
|
338 |
+
# as if we had an image without the margins and were using a crop size without the margins
|
339 |
+
tiling = select_tiling(
|
340 |
+
original_image_h - total_margin_pixels,
|
341 |
+
original_image_w - total_margin_pixels,
|
342 |
+
crop_window_size,
|
343 |
+
max_crops,
|
344 |
+
)
|
345 |
+
|
346 |
+
src, img_mask = resize_image(
|
347 |
+
image,
|
348 |
+
resize_mode,
|
349 |
+
[tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels],
|
350 |
+
pad_value,
|
351 |
+
)
|
352 |
+
src = normalize_image(src, normalize_mode)
|
353 |
+
|
354 |
+
# Now we have to split the image into crops, and track what patches came from
|
355 |
+
# where in `patch_idx_arr`
|
356 |
+
n_crops = tiling[0] * tiling[1]
|
357 |
+
crop_arr = np.zeros([n_crops, crop_size, crop_size, 3], dtype=src.dtype)
|
358 |
+
mask_arr = np.zeros([n_crops, crop_size, crop_size], dtype=img_mask.dtype)
|
359 |
+
patch_idx_arr = np.zeros([n_crops, crop_patch_h, crop_patch_w], dtype=np.int32)
|
360 |
+
on = 0
|
361 |
+
on_crop = 0
|
362 |
+
for i in range(tiling[0]):
|
363 |
+
# Slide over `src` by `crop_window_size` steps, but extract crops of size `crops_size`
|
364 |
+
# which results in overlapping crop windows
|
365 |
+
y0 = i*crop_window_size
|
366 |
+
for j in range(tiling[1]):
|
367 |
+
x0 = j*crop_window_size
|
368 |
+
crop_arr[on_crop] = src[y0:y0+crop_size, x0:x0+crop_size]
|
369 |
+
mask_arr[on_crop] = img_mask[y0:y0+crop_size, x0:x0+crop_size]
|
370 |
+
patch_idx = np.arange(crop_patch_w*crop_patch_h).reshape(crop_patch_h, crop_patch_w)
|
371 |
+
patch_idx += on_crop * crop_patch_h * crop_patch_w
|
372 |
+
|
373 |
+
# Mask out idx that are in the overlap region
|
374 |
+
if i != 0:
|
375 |
+
patch_idx[:left_margin, :] = -1
|
376 |
+
if j != 0:
|
377 |
+
patch_idx[:, :left_margin] = -1
|
378 |
+
if i != tiling[0]-1:
|
379 |
+
patch_idx[-right_margin:, :] = -1
|
380 |
+
if j != tiling[1]-1:
|
381 |
+
patch_idx[:, -right_margin:] = -1
|
382 |
+
patch_idx_arr[on_crop] = patch_idx
|
383 |
+
on_crop += 1
|
384 |
+
|
385 |
+
# `patch_idx_arr` is ordered crop-by-crop, here we transpose `patch_idx_arr`
|
386 |
+
# so it is ordered left-to-right order
|
387 |
+
patch_idx_arr = np.reshape(
|
388 |
+
patch_idx_arr,
|
389 |
+
[tiling[0], tiling[1], crop_patch_h, crop_patch_w]
|
390 |
+
)
|
391 |
+
patch_idx_arr = np.transpose(patch_idx_arr, [0, 2, 1, 3])
|
392 |
+
patch_idx_arr = np.reshape(patch_idx_arr, [-1])
|
393 |
+
|
394 |
+
# Now get the parts not in the overlap region, so it should map each patch in `src`
|
395 |
+
# to the correct patch it should come from in `crop_arr`
|
396 |
+
patch_idx_arr = patch_idx_arr[patch_idx_arr >= 0].reshape(
|
397 |
+
src.shape[0]//image_patch_size,
|
398 |
+
src.shape[1]//image_patch_size,
|
399 |
+
)
|
400 |
+
return crop_arr, mask_arr, patch_idx_arr
|
401 |
+
|
402 |
+
|
403 |
+
def batch_pixels_to_patches(array: np.ndarray, patch_size: int) -> np.ndarray:
|
404 |
+
"""Reshape images of [n_images, h, w, 3] -> [n_images, n_patches, pixels_per_patch]"""
|
405 |
+
if len(array.shape) == 3:
|
406 |
+
n_crops, h, w = array.shape
|
407 |
+
h_patches = h//patch_size
|
408 |
+
w_patches = w//patch_size
|
409 |
+
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size])
|
410 |
+
array = np.transpose(array, [0, 1, 3, 2, 4])
|
411 |
+
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size])
|
412 |
+
return array
|
413 |
+
else:
|
414 |
+
n_crops, h, w, c = array.shape
|
415 |
+
h_patches = h//patch_size
|
416 |
+
w_patches = w//patch_size
|
417 |
+
array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size, c])
|
418 |
+
array = np.transpose(array, [0, 1, 3, 2, 4, 5])
|
419 |
+
array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size*c])
|
420 |
+
return array
|
421 |
+
|
422 |
+
|
423 |
+
def arange_for_pooling(
|
424 |
+
idx_arr: np.ndarray,
|
425 |
+
pool_h: int,
|
426 |
+
pool_w: int,
|
427 |
+
) -> np.ndarray:
|
428 |
+
h_pad = pool_h * ((idx_arr.shape[0] + pool_h - 1) // pool_h) - idx_arr.shape[0]
|
429 |
+
w_pad = pool_w * ((idx_arr.shape[1] + pool_w - 1) // pool_w) - idx_arr.shape[1]
|
430 |
+
idx_arr = np.pad(idx_arr, [[h_pad//2, (h_pad+1)//2], [w_pad//2, (w_pad+1)//2]],
|
431 |
+
mode='constant',constant_values=-1)
|
432 |
+
return einops.rearrange(
|
433 |
+
idx_arr, "(h dh) (w dw) -> h w (dh dw)", dh=pool_h, dw=pool_w)
|
434 |
+
|
435 |
+
|
436 |
+
def image_to_patches_and_grids(
|
437 |
+
image: ImageInput,
|
438 |
+
crop_mode: str,
|
439 |
+
resize_mode: str,
|
440 |
+
normalize_mode: str,
|
441 |
+
max_crops: int,
|
442 |
+
overlap_margins: List[int],
|
443 |
+
base_image_input_size: List[int],
|
444 |
+
pad_value: float,
|
445 |
+
image_patch_size: int,
|
446 |
+
image_pooling_w: int,
|
447 |
+
image_pooling_h: int,
|
448 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
449 |
+
"""
|
450 |
+
:return image_grids, the shape of each (low-res, high-res) image after pooling
|
451 |
+
:return crops, the image crops to processes with the ViT
|
452 |
+
:return mask, the padding mask for each crop
|
453 |
+
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
|
454 |
+
patches in `crops` to pool for that token, masked with -1
|
455 |
+
"""
|
456 |
+
if isinstance(base_image_input_size, int):
|
457 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
458 |
+
|
459 |
+
base_image_input_d = image_patch_size
|
460 |
+
pooling_w = image_pooling_w
|
461 |
+
pooling_h = image_pooling_h
|
462 |
+
crop_patch_w = base_image_input_size[1] // base_image_input_d
|
463 |
+
crop_patch_h = base_image_input_size[0] // base_image_input_d
|
464 |
+
|
465 |
+
if crop_mode == "resize":
|
466 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
467 |
+
image,
|
468 |
+
resize_mode,
|
469 |
+
normalize_mode,
|
470 |
+
base_image_input_size,
|
471 |
+
pad_value,
|
472 |
+
image_patch_size
|
473 |
+
)
|
474 |
+
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
475 |
+
h, w = pooling_idx.shape[:2]
|
476 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
477 |
+
image_grid = [np.array([h, w])]
|
478 |
+
return (
|
479 |
+
np.stack(image_grid, 0),
|
480 |
+
batch_pixels_to_patches(resized, image_patch_size),
|
481 |
+
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
|
482 |
+
pooling_idx,
|
483 |
+
)
|
484 |
+
|
485 |
+
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
|
486 |
+
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
|
487 |
+
image,
|
488 |
+
resize_mode,
|
489 |
+
normalize_mode,
|
490 |
+
max_crops,
|
491 |
+
overlap_margins,
|
492 |
+
base_image_input_size,
|
493 |
+
pad_value,
|
494 |
+
image_patch_size,
|
495 |
+
)
|
496 |
+
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
|
497 |
+
h, w = pooling_idx.shape[:2]
|
498 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
499 |
+
image_grid = [np.array([h, w])]
|
500 |
+
|
501 |
+
if crop_mode == "overlap-and-resize":
|
502 |
+
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
|
503 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
504 |
+
return np.stack(image_grid, 0), crop_arr, mask_arr, pooling_idx
|
505 |
+
|
506 |
+
# Finally do the same for the global image
|
507 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
508 |
+
image,
|
509 |
+
resize_mode,
|
510 |
+
normalize_mode,
|
511 |
+
base_image_input_size,
|
512 |
+
pad_value,
|
513 |
+
image_patch_size
|
514 |
+
)
|
515 |
+
crop_arr = np.concatenate([resized, crop_arr], 0)
|
516 |
+
|
517 |
+
mask_arr = np.concatenate([resized_mask, mask_arr], 0)
|
518 |
+
|
519 |
+
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
520 |
+
h, w = resize_idx.shape[:2]
|
521 |
+
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])
|
522 |
+
|
523 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
524 |
+
pooling_idx = np.where(
|
525 |
+
pooling_idx >= 0,
|
526 |
+
pooling_idx + crop_patch_h*crop_patch_w,
|
527 |
+
-1
|
528 |
+
)
|
529 |
+
pooling_idx = np.concatenate([resize_idx, pooling_idx])
|
530 |
+
image_grid = [
|
531 |
+
np.array([h, w]),
|
532 |
+
] + image_grid
|
533 |
+
|
534 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
535 |
+
return (
|
536 |
+
np.stack(image_grid, 0),
|
537 |
+
batch_pixels_to_patches(crop_arr, image_patch_size),
|
538 |
+
mask_arr,
|
539 |
+
pooling_idx
|
540 |
+
)
|
541 |
+
else:
|
542 |
+
raise NotImplementedError(crop_mode)
|
543 |
+
|
544 |
+
|
545 |
+
def image_to_patches_and_tokens(
|
546 |
+
image: ImageInput,
|
547 |
+
crop_mode: str,
|
548 |
+
use_col_tokens: bool,
|
549 |
+
resize_mode: str,
|
550 |
+
normalize_mode: str,
|
551 |
+
max_crops: int,
|
552 |
+
overlap_margins: List[int],
|
553 |
+
base_image_input_size: List[int],
|
554 |
+
pad_value: float,
|
555 |
+
image_patch_size: int,
|
556 |
+
image_pooling_w: int,
|
557 |
+
image_pooling_h: int,
|
558 |
+
image_patch_token_id: int,
|
559 |
+
image_col_token_id: int,
|
560 |
+
image_start_token_id: int,
|
561 |
+
image_end_token_id: int,
|
562 |
+
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
563 |
+
"""
|
564 |
+
:return image_tokens, the token IDS for this image, including special tokens
|
565 |
+
:return crops, the image crops to processes with the ViT
|
566 |
+
:return mask, the padding mask for each crop
|
567 |
+
:return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
|
568 |
+
patches in `crops` to pool for that token, masked with -1
|
569 |
+
"""
|
570 |
+
|
571 |
+
if isinstance(base_image_input_size, int):
|
572 |
+
base_image_input_size = (base_image_input_size, base_image_input_size)
|
573 |
+
|
574 |
+
base_image_input_d = image_patch_size
|
575 |
+
pooling_w = image_pooling_w
|
576 |
+
pooling_h = image_pooling_h
|
577 |
+
patch_id = image_patch_token_id
|
578 |
+
col_id = image_col_token_id
|
579 |
+
start_id = image_start_token_id
|
580 |
+
end_id = image_end_token_id
|
581 |
+
crop_patch_w = base_image_input_size[1] // base_image_input_d
|
582 |
+
crop_patch_h = base_image_input_size[0] // base_image_input_d
|
583 |
+
|
584 |
+
if crop_mode == "resize":
|
585 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
586 |
+
image,
|
587 |
+
resize_mode,
|
588 |
+
normalize_mode,
|
589 |
+
base_image_input_size,
|
590 |
+
pad_value,
|
591 |
+
image_patch_size
|
592 |
+
)
|
593 |
+
pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
594 |
+
h, w = pooling_idx.shape[:2]
|
595 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
596 |
+
per_row = np.full(
|
597 |
+
(w,),
|
598 |
+
patch_id,
|
599 |
+
dtype=np.int32
|
600 |
+
)
|
601 |
+
if use_col_tokens:
|
602 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
603 |
+
extra_tokens = np.tile(per_row, [h])
|
604 |
+
joint = [
|
605 |
+
[start_id],
|
606 |
+
extra_tokens,
|
607 |
+
[end_id],
|
608 |
+
]
|
609 |
+
return (
|
610 |
+
np.concatenate(joint, 0),
|
611 |
+
batch_pixels_to_patches(resized, image_patch_size),
|
612 |
+
batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
|
613 |
+
pooling_idx,
|
614 |
+
)
|
615 |
+
|
616 |
+
if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
|
617 |
+
crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
|
618 |
+
image,
|
619 |
+
resize_mode,
|
620 |
+
normalize_mode,
|
621 |
+
max_crops,
|
622 |
+
overlap_margins,
|
623 |
+
base_image_input_size,
|
624 |
+
pad_value,
|
625 |
+
image_patch_size,
|
626 |
+
)
|
627 |
+
pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
|
628 |
+
h, w = pooling_idx.shape[:2]
|
629 |
+
pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
|
630 |
+
|
631 |
+
# Now build the output tokens
|
632 |
+
per_row = np.full(w, patch_id, dtype=np.int32)
|
633 |
+
if use_col_tokens:
|
634 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
635 |
+
joint = np.tile(per_row, [h])
|
636 |
+
joint = [
|
637 |
+
[start_id],
|
638 |
+
joint,
|
639 |
+
[end_id]
|
640 |
+
]
|
641 |
+
|
642 |
+
if crop_mode == "overlap-and-resize":
|
643 |
+
crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
|
644 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
645 |
+
return np.concatenate(joint, 0), crop_arr, mask_arr, pooling_idx
|
646 |
+
|
647 |
+
# Finally do the same for the global image
|
648 |
+
resized, resized_mask, resize_idx = build_resized_image(
|
649 |
+
image,
|
650 |
+
resize_mode,
|
651 |
+
normalize_mode,
|
652 |
+
base_image_input_size,
|
653 |
+
pad_value,
|
654 |
+
image_patch_size
|
655 |
+
)
|
656 |
+
crop_arr = np.concatenate([resized, crop_arr], 0)
|
657 |
+
|
658 |
+
mask_arr = np.concatenate([resized_mask, mask_arr], 0)
|
659 |
+
|
660 |
+
resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
|
661 |
+
h, w = resize_idx.shape[:2]
|
662 |
+
resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])
|
663 |
+
|
664 |
+
# Global image goes first, so the order of patches in previous crops gets increased
|
665 |
+
pooling_idx = np.where(
|
666 |
+
pooling_idx >= 0,
|
667 |
+
pooling_idx + crop_patch_h*crop_patch_w,
|
668 |
+
-1
|
669 |
+
)
|
670 |
+
pooling_idx = np.concatenate([resize_idx, pooling_idx])
|
671 |
+
|
672 |
+
per_row = np.full(
|
673 |
+
(w,),
|
674 |
+
patch_id,
|
675 |
+
dtype=np.int32
|
676 |
+
)
|
677 |
+
if use_col_tokens:
|
678 |
+
per_row = np.concatenate([per_row, [col_id]], 0)
|
679 |
+
extra_tokens = np.tile(per_row, [h])
|
680 |
+
joint = [
|
681 |
+
[start_id],
|
682 |
+
extra_tokens,
|
683 |
+
[end_id],
|
684 |
+
] + joint
|
685 |
+
mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
|
686 |
+
return (
|
687 |
+
np.concatenate(joint, 0),
|
688 |
+
batch_pixels_to_patches(crop_arr, image_patch_size),
|
689 |
+
mask_arr,
|
690 |
+
pooling_idx
|
691 |
+
)
|
692 |
+
else:
|
693 |
+
raise NotImplementedError(crop_mode)
|
694 |
+
|
695 |
+
|
696 |
+
class MolmoActImagesKwargs(ImagesKwargs, total=False):
|
697 |
+
crop_mode: Optional[str]
|
698 |
+
resize_mode: Optional[str]
|
699 |
+
normalize_mode: Optional[str]
|
700 |
+
max_crops: Optional[int]
|
701 |
+
max_multi_image_crops: Optional[int]
|
702 |
+
overlap_margins: Optional[List[int]]
|
703 |
+
base_image_input_size: Optional[List[int]]
|
704 |
+
pad_value: Optional[float]
|
705 |
+
image_patch_size: Optional[int]
|
706 |
+
image_pooling_w: Optional[int]
|
707 |
+
image_pooling_h: Optional[int]
|
708 |
+
|
709 |
+
|
710 |
+
class MolmoActImageProcessor(BaseImageProcessor):
|
711 |
+
|
712 |
+
model_input_names = ["images", "pooled_patches_idx", "image_masks"]
|
713 |
+
|
714 |
+
def __init__(
|
715 |
+
self,
|
716 |
+
crop_mode: str = "overlap-and-resize-c2",
|
717 |
+
resize_mode: str = "siglip",
|
718 |
+
normalize_mode: str = "siglip",
|
719 |
+
max_crops: int = 8,
|
720 |
+
max_multi_image_crops: int = 4,
|
721 |
+
overlap_margins: List[int] = [4, 4],
|
722 |
+
base_image_input_size: List[int] = (378, 378),
|
723 |
+
pad_value: float = 0.0,
|
724 |
+
image_patch_size: int = 14,
|
725 |
+
image_pooling_w: int = 2,
|
726 |
+
image_pooling_h: int = 2,
|
727 |
+
do_convert_rgb: bool = True,
|
728 |
+
do_pad: Optional[bool] = True,
|
729 |
+
**kwargs,
|
730 |
+
) -> None:
|
731 |
+
super().__init__(**kwargs)
|
732 |
+
self.crop_mode = crop_mode
|
733 |
+
self.resize_mode = resize_mode
|
734 |
+
self.normalize_mode = normalize_mode
|
735 |
+
self.overlap_margins = overlap_margins
|
736 |
+
self.max_crops = max_crops
|
737 |
+
self.max_multi_image_crops = max_multi_image_crops
|
738 |
+
self.overlap_margins = overlap_margins
|
739 |
+
self.base_image_input_size = base_image_input_size
|
740 |
+
self.pad_value = pad_value
|
741 |
+
self.image_patch_size = image_patch_size
|
742 |
+
self.image_pooling_w = image_pooling_w
|
743 |
+
self.image_pooling_h = image_pooling_h
|
744 |
+
self.do_convert_rgb = do_convert_rgb
|
745 |
+
self.do_pad = do_pad
|
746 |
+
|
747 |
+
def to_channel_dimension_last(
|
748 |
+
self,
|
749 |
+
images: List[ImageInput],
|
750 |
+
) -> List[ImageInput]:
|
751 |
+
"""
|
752 |
+
Convert images to channel dimension last.
|
753 |
+
"""
|
754 |
+
new_images = []
|
755 |
+
for image in images:
|
756 |
+
if is_multi_image(image):
|
757 |
+
new_images.append([to_channel_dimension_format(img, ChannelDimension.LAST) for img in image])
|
758 |
+
else:
|
759 |
+
new_images.append(to_channel_dimension_format(image, ChannelDimension.LAST))
|
760 |
+
return new_images
|
761 |
+
|
762 |
+
def to_numpy_array(
|
763 |
+
self,
|
764 |
+
images: List[ImageInput],
|
765 |
+
) -> List[np.ndarray]:
|
766 |
+
"""
|
767 |
+
Convert images to numpy array.
|
768 |
+
"""
|
769 |
+
new_images = []
|
770 |
+
for image in images:
|
771 |
+
if is_multi_image(image):
|
772 |
+
new_images.append([to_numpy_array(img) for img in image])
|
773 |
+
else:
|
774 |
+
new_images.append(to_numpy_array(image))
|
775 |
+
return new_images
|
776 |
+
|
777 |
+
def to_rgb(
|
778 |
+
self,
|
779 |
+
images: List[ImageInput],
|
780 |
+
) -> List[ImageInput]:
|
781 |
+
"""
|
782 |
+
Convert images to RGB.
|
783 |
+
"""
|
784 |
+
new_images = []
|
785 |
+
for image in images:
|
786 |
+
if is_multi_image(image):
|
787 |
+
new_images.append([convert_to_rgb(img) for img in image])
|
788 |
+
else:
|
789 |
+
new_images.append(convert_to_rgb(image))
|
790 |
+
return new_images
|
791 |
+
|
792 |
+
def pad_arrays(self, arrays: List[np.ndarray], pad_value: float = -1) -> np.ndarray:
|
793 |
+
max_len = max(arr.shape[0] for arr in arrays)
|
794 |
+
padded_arr = np.full(
|
795 |
+
[len(arrays), max_len] + list(arrays[0].shape[1:]), pad_value, dtype=arrays[0].dtype
|
796 |
+
)
|
797 |
+
for ix, arr in enumerate(arrays):
|
798 |
+
padded_arr[ix, :len(arr)] = arr[:max_len]
|
799 |
+
return padded_arr
|
800 |
+
|
801 |
+
def pad_for_batching(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
802 |
+
"""
|
803 |
+
Pad the data for batching.
|
804 |
+
"""
|
805 |
+
images = self.pad_arrays(data["images"])
|
806 |
+
pooled_patches_idx = self.pad_arrays(data["pooled_patches_idx"])
|
807 |
+
image_masks = self.pad_arrays(data["image_masks"])
|
808 |
+
image_grids = self.pad_arrays(data["image_grids"])
|
809 |
+
new_data = dict(
|
810 |
+
images=images,
|
811 |
+
pooled_patches_idx=pooled_patches_idx,
|
812 |
+
image_masks=image_masks,
|
813 |
+
image_grids=image_grids,
|
814 |
+
)
|
815 |
+
return new_data
|
816 |
+
|
817 |
+
def preprocess(
|
818 |
+
self,
|
819 |
+
images: Union[ImageInput, List[ImageInput]],
|
820 |
+
crop_mode: Optional[str] = None,
|
821 |
+
resize_mode: Optional[str] = None,
|
822 |
+
normalize_mode: Optional[str] = None,
|
823 |
+
max_crops: Optional[int] = None,
|
824 |
+
max_multi_image_crops: Optional[int] = None,
|
825 |
+
overlap_margins: Optional[List[int]] = None,
|
826 |
+
base_image_input_size: Optional[List[int]] = None,
|
827 |
+
pad_value: Optional[float] = None,
|
828 |
+
image_patch_size: Optional[int] = None,
|
829 |
+
image_pooling_w: Optional[int] = None,
|
830 |
+
image_pooling_h: Optional[int] = None,
|
831 |
+
do_convert_rgb: Optional[bool] = None,
|
832 |
+
do_pad: Optional[bool] = None,
|
833 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
834 |
+
**kwargs,
|
835 |
+
) -> BatchFeature:
|
836 |
+
"""
|
837 |
+
Preprocess an image for the model.
|
838 |
+
Args:
|
839 |
+
image: The image to preprocess.
|
840 |
+
crop_mode: The crop mode to use. If None, use the default crop mode.
|
841 |
+
resize_mode: The resize mode to use. If None, use the default resize mode.
|
842 |
+
normalize_mode: The normalization mode to use. If None, use the default normalization mode.
|
843 |
+
max_crops: The maximum number of crops to use. If None, use the default value.
|
844 |
+
max_multi_image_crops: The maximum number of crops to use for multi-image inputs.
|
845 |
+
overlap_margins: The overlap margins to use. If None, use the default values.
|
846 |
+
base_image_input_size: The base image input size to use. If None, use the default size.
|
847 |
+
pad_value: The padding value to use. If None, use the default value.
|
848 |
+
image_patch_size: The size of the image patches. If None, use the default size.
|
849 |
+
image_pooling_h: The height of the image pooling. If None, use the default height.
|
850 |
+
image_pooling_w: The width of the image pooling. If None, use the default width.
|
851 |
+
do_convert_rgb: Whether to convert the image to RGB. If None, use the default value.
|
852 |
+
do_pad: Whether to pad image features. If None, use the default value.
|
853 |
+
|
854 |
+
Returns:
|
855 |
+
A tuple containing:
|
856 |
+
- The image grids
|
857 |
+
- The preprocessed images
|
858 |
+
- The padding masks
|
859 |
+
- The pooling indices
|
860 |
+
"""
|
861 |
+
images = make_batched_images(images)
|
862 |
+
|
863 |
+
if not valid_images(images):
|
864 |
+
raise ValueError("Invalid image input")
|
865 |
+
|
866 |
+
crop_mode = crop_mode or self.crop_mode
|
867 |
+
normalize_mode = normalize_mode or self.normalize_mode
|
868 |
+
resize_mode = resize_mode or self.resize_mode
|
869 |
+
max_crops = max_crops or self.max_crops
|
870 |
+
max_multi_image_crops = max_multi_image_crops or self.max_multi_image_crops
|
871 |
+
overlap_margins = overlap_margins or self.overlap_margins
|
872 |
+
base_image_input_size = base_image_input_size or self.base_image_input_size
|
873 |
+
pad_value = pad_value or self.pad_value
|
874 |
+
image_patch_size = image_patch_size or self.image_patch_size
|
875 |
+
image_pooling_w = image_pooling_w or self.image_pooling_w
|
876 |
+
image_pooling_h = image_pooling_h or self.image_pooling_h
|
877 |
+
do_convert_rgb = do_convert_rgb or self.do_convert_rgb
|
878 |
+
do_pad = do_pad or self.do_pad
|
879 |
+
|
880 |
+
if do_convert_rgb:
|
881 |
+
images = self.to_rgb(images)
|
882 |
+
|
883 |
+
# All transformations expect numpy arrays.
|
884 |
+
images = self.to_numpy_array(images)
|
885 |
+
|
886 |
+
# All transformations expect channel dimension last.
|
887 |
+
images = self.to_channel_dimension_last(images)
|
888 |
+
|
889 |
+
batch_image_grids = []
|
890 |
+
batch_crops = []
|
891 |
+
batch_crop_masks = []
|
892 |
+
batch_pooled_patches_idx = []
|
893 |
+
|
894 |
+
for image in images:
|
895 |
+
if is_multi_image(image):
|
896 |
+
all_image_grids = []
|
897 |
+
all_crops = []
|
898 |
+
all_crop_masks = []
|
899 |
+
pooled_patches_idx = []
|
900 |
+
for img in image:
|
901 |
+
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
|
902 |
+
img,
|
903 |
+
crop_mode,
|
904 |
+
resize_mode,
|
905 |
+
normalize_mode,
|
906 |
+
max_multi_image_crops,
|
907 |
+
overlap_margins,
|
908 |
+
base_image_input_size,
|
909 |
+
pad_value,
|
910 |
+
image_patch_size,
|
911 |
+
image_pooling_w,
|
912 |
+
image_pooling_h,
|
913 |
+
)
|
914 |
+
pooled_patches_idx.append(pooled_idx + sum(np.prod(x.shape[:2]) for x in all_crops))
|
915 |
+
all_crops.append(crops)
|
916 |
+
all_crop_masks.append(img_mask)
|
917 |
+
all_image_grids.append(image_grid)
|
918 |
+
all_image_grids = np.concatenate(all_image_grids, 0)
|
919 |
+
all_crops = np.concatenate(all_crops, 0)
|
920 |
+
all_crop_masks = np.concatenate(all_crop_masks, 0)
|
921 |
+
pooled_patches_idx = np.concatenate(pooled_patches_idx, 0)
|
922 |
+
|
923 |
+
batch_image_grids.append(all_image_grids)
|
924 |
+
batch_crops.append(all_crops)
|
925 |
+
batch_crop_masks.append(all_crop_masks)
|
926 |
+
batch_pooled_patches_idx.append(pooled_patches_idx)
|
927 |
+
else:
|
928 |
+
image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
|
929 |
+
image,
|
930 |
+
crop_mode,
|
931 |
+
resize_mode,
|
932 |
+
normalize_mode,
|
933 |
+
max_crops,
|
934 |
+
overlap_margins,
|
935 |
+
base_image_input_size,
|
936 |
+
pad_value,
|
937 |
+
image_patch_size,
|
938 |
+
image_pooling_w,
|
939 |
+
image_pooling_h,
|
940 |
+
)
|
941 |
+
batch_image_grids.append(image_grid)
|
942 |
+
batch_crops.append(crops)
|
943 |
+
batch_crop_masks.append(img_mask)
|
944 |
+
batch_pooled_patches_idx.append(pooled_idx)
|
945 |
+
|
946 |
+
data =dict(
|
947 |
+
images=batch_crops,
|
948 |
+
pooled_patches_idx=batch_pooled_patches_idx,
|
949 |
+
image_masks=batch_crop_masks,
|
950 |
+
image_grids=batch_image_grids,
|
951 |
+
)
|
952 |
+
|
953 |
+
if do_pad:
|
954 |
+
data = self.pad_for_batching(data)
|
955 |
+
|
956 |
+
return BatchFeature(data, tensor_type=return_tensors)
|
957 |
+
|
958 |
+
|
959 |
+
MolmoActImageProcessor.register_for_auto_class()
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bc665d48e0f6675b8aac77c66e9431b84148890e4d6ab543a7c458971ca6142
|
3 |
+
size 4878581216
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a825abfe7f8d124a314052b4e3aee8d854fb061a841d95d495724ecfdcb89119
|
3 |
+
size 4932745864
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7955e52696c59a1e4b49a22dfe7eef2a1dc902f00307ffe4eddbe52609bacb8b
|
3 |
+
size 4994552920
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:88f9e18a24cc86ca87a247792595032e4a9d4811291855fafdc2dadc6ae4ce70
|
3 |
+
size 1433042592
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16238835616
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.transformer.blocks.0.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.transformer.blocks.0.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.transformer.blocks.0.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
12 |
+
"model.transformer.blocks.0.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.transformer.blocks.0.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.transformer.blocks.1.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.transformer.blocks.1.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.transformer.blocks.1.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.transformer.blocks.1.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.transformer.blocks.1.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
|
22 |
+
"model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00004.safetensors",
|
23 |
+
"model.transformer.blocks.10.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
24 |
+
"model.transformer.blocks.10.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
25 |
+
"model.transformer.blocks.10.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
26 |
+
"model.transformer.blocks.10.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"model.transformer.blocks.10.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"model.transformer.blocks.11.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"model.transformer.blocks.11.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"model.transformer.blocks.11.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
33 |
+
"model.transformer.blocks.11.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.transformer.blocks.11.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.transformer.blocks.12.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.transformer.blocks.12.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.transformer.blocks.12.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
40 |
+
"model.transformer.blocks.12.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.transformer.blocks.12.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.transformer.blocks.13.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.transformer.blocks.13.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.transformer.blocks.13.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
47 |
+
"model.transformer.blocks.13.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.transformer.blocks.13.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.transformer.blocks.14.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.transformer.blocks.14.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.transformer.blocks.14.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
54 |
+
"model.transformer.blocks.14.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.transformer.blocks.14.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.transformer.blocks.15.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.transformer.blocks.15.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.transformer.blocks.15.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
61 |
+
"model.transformer.blocks.15.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.transformer.blocks.15.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.transformer.blocks.16.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.transformer.blocks.16.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.transformer.blocks.16.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
68 |
+
"model.transformer.blocks.16.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.transformer.blocks.16.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.transformer.blocks.17.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.transformer.blocks.17.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.transformer.blocks.17.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
75 |
+
"model.transformer.blocks.17.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.transformer.blocks.17.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.transformer.blocks.18.ff_norm.weight": "model-00003-of-00004.safetensors",
|
79 |
+
"model.transformer.blocks.18.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
80 |
+
"model.transformer.blocks.18.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.transformer.blocks.18.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
82 |
+
"model.transformer.blocks.18.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.transformer.blocks.18.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.transformer.blocks.19.attn_norm.weight": "model-00003-of-00004.safetensors",
|
85 |
+
"model.transformer.blocks.19.ff_norm.weight": "model-00003-of-00004.safetensors",
|
86 |
+
"model.transformer.blocks.19.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
87 |
+
"model.transformer.blocks.19.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
88 |
+
"model.transformer.blocks.19.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
89 |
+
"model.transformer.blocks.19.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
90 |
+
"model.transformer.blocks.19.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
91 |
+
"model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00004.safetensors",
|
92 |
+
"model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00004.safetensors",
|
93 |
+
"model.transformer.blocks.2.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
94 |
+
"model.transformer.blocks.2.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
95 |
+
"model.transformer.blocks.2.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
96 |
+
"model.transformer.blocks.2.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
97 |
+
"model.transformer.blocks.2.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
98 |
+
"model.transformer.blocks.20.attn_norm.weight": "model-00003-of-00004.safetensors",
|
99 |
+
"model.transformer.blocks.20.ff_norm.weight": "model-00003-of-00004.safetensors",
|
100 |
+
"model.transformer.blocks.20.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
101 |
+
"model.transformer.blocks.20.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
102 |
+
"model.transformer.blocks.20.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
103 |
+
"model.transformer.blocks.20.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
104 |
+
"model.transformer.blocks.20.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.transformer.blocks.21.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.transformer.blocks.21.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.transformer.blocks.21.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
110 |
+
"model.transformer.blocks.21.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"model.transformer.blocks.21.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
|
113 |
+
"model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"model.transformer.blocks.22.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
115 |
+
"model.transformer.blocks.22.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"model.transformer.blocks.22.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
117 |
+
"model.transformer.blocks.22.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.transformer.blocks.22.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.transformer.blocks.23.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
122 |
+
"model.transformer.blocks.23.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.transformer.blocks.23.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
124 |
+
"model.transformer.blocks.23.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
125 |
+
"model.transformer.blocks.23.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.transformer.blocks.24.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.transformer.blocks.24.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.transformer.blocks.24.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
131 |
+
"model.transformer.blocks.24.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.transformer.blocks.24.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.transformer.blocks.25.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.transformer.blocks.25.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"model.transformer.blocks.25.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
138 |
+
"model.transformer.blocks.25.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"model.transformer.blocks.25.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.transformer.blocks.26.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.transformer.blocks.26.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.transformer.blocks.26.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
145 |
+
"model.transformer.blocks.26.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.transformer.blocks.26.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.transformer.blocks.27.mlp.ff_out.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.transformer.blocks.27.mlp.ff_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.transformer.blocks.27.self_attn.att_proj.bias": "model-00003-of-00004.safetensors",
|
152 |
+
"model.transformer.blocks.27.self_attn.att_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.transformer.blocks.27.self_attn.attn_out.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.transformer.blocks.3.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.transformer.blocks.3.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
158 |
+
"model.transformer.blocks.3.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
159 |
+
"model.transformer.blocks.3.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.transformer.blocks.3.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
161 |
+
"model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
|
163 |
+
"model.transformer.blocks.4.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.transformer.blocks.4.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
165 |
+
"model.transformer.blocks.4.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
166 |
+
"model.transformer.blocks.4.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
167 |
+
"model.transformer.blocks.4.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
168 |
+
"model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00004.safetensors",
|
169 |
+
"model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00004.safetensors",
|
170 |
+
"model.transformer.blocks.5.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
171 |
+
"model.transformer.blocks.5.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
172 |
+
"model.transformer.blocks.5.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
173 |
+
"model.transformer.blocks.5.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
174 |
+
"model.transformer.blocks.5.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
175 |
+
"model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
|
176 |
+
"model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
|
177 |
+
"model.transformer.blocks.6.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
178 |
+
"model.transformer.blocks.6.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
179 |
+
"model.transformer.blocks.6.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
180 |
+
"model.transformer.blocks.6.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
181 |
+
"model.transformer.blocks.6.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
182 |
+
"model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
|
183 |
+
"model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00004.safetensors",
|
184 |
+
"model.transformer.blocks.7.mlp.ff_out.weight": "model-00001-of-00004.safetensors",
|
185 |
+
"model.transformer.blocks.7.mlp.ff_proj.weight": "model-00001-of-00004.safetensors",
|
186 |
+
"model.transformer.blocks.7.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
187 |
+
"model.transformer.blocks.7.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
188 |
+
"model.transformer.blocks.7.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
189 |
+
"model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00004.safetensors",
|
190 |
+
"model.transformer.blocks.8.ff_norm.weight": "model-00002-of-00004.safetensors",
|
191 |
+
"model.transformer.blocks.8.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
192 |
+
"model.transformer.blocks.8.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
193 |
+
"model.transformer.blocks.8.self_attn.att_proj.bias": "model-00001-of-00004.safetensors",
|
194 |
+
"model.transformer.blocks.8.self_attn.att_proj.weight": "model-00001-of-00004.safetensors",
|
195 |
+
"model.transformer.blocks.8.self_attn.attn_out.weight": "model-00001-of-00004.safetensors",
|
196 |
+
"model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
|
197 |
+
"model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00004.safetensors",
|
198 |
+
"model.transformer.blocks.9.mlp.ff_out.weight": "model-00002-of-00004.safetensors",
|
199 |
+
"model.transformer.blocks.9.mlp.ff_proj.weight": "model-00002-of-00004.safetensors",
|
200 |
+
"model.transformer.blocks.9.self_attn.att_proj.bias": "model-00002-of-00004.safetensors",
|
201 |
+
"model.transformer.blocks.9.self_attn.att_proj.weight": "model-00002-of-00004.safetensors",
|
202 |
+
"model.transformer.blocks.9.self_attn.attn_out.weight": "model-00002-of-00004.safetensors",
|
203 |
+
"model.transformer.ln_f.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.transformer.wte.embedding": "model-00001-of-00004.safetensors",
|
205 |
+
"model.transformer.wte.new_embedding": "model-00001-of-00004.safetensors",
|
206 |
+
"model.vision_backbone.image_pooling_2d.wk.bias": "model-00004-of-00004.safetensors",
|
207 |
+
"model.vision_backbone.image_pooling_2d.wk.weight": "model-00004-of-00004.safetensors",
|
208 |
+
"model.vision_backbone.image_pooling_2d.wo.bias": "model-00004-of-00004.safetensors",
|
209 |
+
"model.vision_backbone.image_pooling_2d.wo.weight": "model-00004-of-00004.safetensors",
|
210 |
+
"model.vision_backbone.image_pooling_2d.wq.bias": "model-00004-of-00004.safetensors",
|
211 |
+
"model.vision_backbone.image_pooling_2d.wq.weight": "model-00004-of-00004.safetensors",
|
212 |
+
"model.vision_backbone.image_pooling_2d.wv.bias": "model-00004-of-00004.safetensors",
|
213 |
+
"model.vision_backbone.image_pooling_2d.wv.weight": "model-00004-of-00004.safetensors",
|
214 |
+
"model.vision_backbone.image_projector.w1.weight": "model-00004-of-00004.safetensors",
|
215 |
+
"model.vision_backbone.image_projector.w2.weight": "model-00004-of-00004.safetensors",
|
216 |
+
"model.vision_backbone.image_projector.w3.weight": "model-00004-of-00004.safetensors",
|
217 |
+
"model.vision_backbone.image_vit.patch_embedding.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.vision_backbone.image_vit.patch_embedding.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.vision_backbone.image_vit.positional_embedding": "model-00003-of-00004.safetensors",
|
220 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wk.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wk.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wo.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wo.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wq.bias": "model-00003-of-00004.safetensors",
|
225 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wq.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wv.bias": "model-00003-of-00004.safetensors",
|
227 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention.wv.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention_norm.bias": "model-00003-of-00004.safetensors",
|
229 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.attention_norm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
231 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.vision_backbone.image_vit.transformer.resblocks.0.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wk.bias": "model-00003-of-00004.safetensors",
|
237 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wk.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wo.bias": "model-00003-of-00004.safetensors",
|
239 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wo.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wq.bias": "model-00003-of-00004.safetensors",
|
241 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wq.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wv.bias": "model-00003-of-00004.safetensors",
|
243 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention.wv.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention_norm.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.attention_norm.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
249 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
251 |
+
"model.vision_backbone.image_vit.transformer.resblocks.1.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wk.bias": "model-00003-of-00004.safetensors",
|
253 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wk.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wo.bias": "model-00003-of-00004.safetensors",
|
255 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wo.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wq.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wq.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wv.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention.wv.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention_norm.bias": "model-00003-of-00004.safetensors",
|
261 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.attention_norm.weight": "model-00003-of-00004.safetensors",
|
262 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
263 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
264 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
265 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
266 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
267 |
+
"model.vision_backbone.image_vit.transformer.resblocks.10.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
268 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wk.bias": "model-00003-of-00004.safetensors",
|
269 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wk.weight": "model-00003-of-00004.safetensors",
|
270 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wo.bias": "model-00003-of-00004.safetensors",
|
271 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wo.weight": "model-00003-of-00004.safetensors",
|
272 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wq.bias": "model-00003-of-00004.safetensors",
|
273 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wq.weight": "model-00003-of-00004.safetensors",
|
274 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wv.bias": "model-00003-of-00004.safetensors",
|
275 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention.wv.weight": "model-00003-of-00004.safetensors",
|
276 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention_norm.bias": "model-00003-of-00004.safetensors",
|
277 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.attention_norm.weight": "model-00003-of-00004.safetensors",
|
278 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
279 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
280 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
281 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
282 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
283 |
+
"model.vision_backbone.image_vit.transformer.resblocks.11.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
284 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wk.bias": "model-00003-of-00004.safetensors",
|
285 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wk.weight": "model-00003-of-00004.safetensors",
|
286 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wo.bias": "model-00003-of-00004.safetensors",
|
287 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wo.weight": "model-00003-of-00004.safetensors",
|
288 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wq.bias": "model-00003-of-00004.safetensors",
|
289 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wq.weight": "model-00003-of-00004.safetensors",
|
290 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wv.bias": "model-00003-of-00004.safetensors",
|
291 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention.wv.weight": "model-00003-of-00004.safetensors",
|
292 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention_norm.bias": "model-00003-of-00004.safetensors",
|
293 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.attention_norm.weight": "model-00003-of-00004.safetensors",
|
294 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
295 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
296 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
297 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
298 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
299 |
+
"model.vision_backbone.image_vit.transformer.resblocks.12.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
300 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wk.bias": "model-00003-of-00004.safetensors",
|
301 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wk.weight": "model-00003-of-00004.safetensors",
|
302 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wo.bias": "model-00003-of-00004.safetensors",
|
303 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wo.weight": "model-00003-of-00004.safetensors",
|
304 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wq.bias": "model-00003-of-00004.safetensors",
|
305 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wq.weight": "model-00003-of-00004.safetensors",
|
306 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wv.bias": "model-00003-of-00004.safetensors",
|
307 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention.wv.weight": "model-00003-of-00004.safetensors",
|
308 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention_norm.bias": "model-00003-of-00004.safetensors",
|
309 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.attention_norm.weight": "model-00003-of-00004.safetensors",
|
310 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
311 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
312 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
313 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
314 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
315 |
+
"model.vision_backbone.image_vit.transformer.resblocks.13.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
316 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wk.bias": "model-00003-of-00004.safetensors",
|
317 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wk.weight": "model-00003-of-00004.safetensors",
|
318 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wo.bias": "model-00003-of-00004.safetensors",
|
319 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wo.weight": "model-00003-of-00004.safetensors",
|
320 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wq.bias": "model-00003-of-00004.safetensors",
|
321 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wq.weight": "model-00003-of-00004.safetensors",
|
322 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wv.bias": "model-00003-of-00004.safetensors",
|
323 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention.wv.weight": "model-00003-of-00004.safetensors",
|
324 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention_norm.bias": "model-00003-of-00004.safetensors",
|
325 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.attention_norm.weight": "model-00003-of-00004.safetensors",
|
326 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
327 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
328 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
329 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
330 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
331 |
+
"model.vision_backbone.image_vit.transformer.resblocks.14.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
332 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wk.bias": "model-00003-of-00004.safetensors",
|
333 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wk.weight": "model-00003-of-00004.safetensors",
|
334 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wo.bias": "model-00003-of-00004.safetensors",
|
335 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wo.weight": "model-00003-of-00004.safetensors",
|
336 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wq.bias": "model-00003-of-00004.safetensors",
|
337 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wq.weight": "model-00003-of-00004.safetensors",
|
338 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wv.bias": "model-00003-of-00004.safetensors",
|
339 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention.wv.weight": "model-00003-of-00004.safetensors",
|
340 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention_norm.bias": "model-00003-of-00004.safetensors",
|
341 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.attention_norm.weight": "model-00003-of-00004.safetensors",
|
342 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
343 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
344 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
345 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
346 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
347 |
+
"model.vision_backbone.image_vit.transformer.resblocks.15.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
348 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wk.bias": "model-00003-of-00004.safetensors",
|
349 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wk.weight": "model-00003-of-00004.safetensors",
|
350 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wo.bias": "model-00003-of-00004.safetensors",
|
351 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wo.weight": "model-00003-of-00004.safetensors",
|
352 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wq.bias": "model-00003-of-00004.safetensors",
|
353 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wq.weight": "model-00003-of-00004.safetensors",
|
354 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wv.bias": "model-00003-of-00004.safetensors",
|
355 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention.wv.weight": "model-00003-of-00004.safetensors",
|
356 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention_norm.bias": "model-00003-of-00004.safetensors",
|
357 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.attention_norm.weight": "model-00003-of-00004.safetensors",
|
358 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
359 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
360 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
361 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
363 |
+
"model.vision_backbone.image_vit.transformer.resblocks.16.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
364 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wk.bias": "model-00003-of-00004.safetensors",
|
365 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wk.weight": "model-00003-of-00004.safetensors",
|
366 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wo.bias": "model-00003-of-00004.safetensors",
|
367 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wo.weight": "model-00003-of-00004.safetensors",
|
368 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wq.bias": "model-00003-of-00004.safetensors",
|
369 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wq.weight": "model-00003-of-00004.safetensors",
|
370 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wv.bias": "model-00003-of-00004.safetensors",
|
371 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention.wv.weight": "model-00003-of-00004.safetensors",
|
372 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention_norm.bias": "model-00003-of-00004.safetensors",
|
373 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.attention_norm.weight": "model-00003-of-00004.safetensors",
|
374 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
375 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
376 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
377 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
379 |
+
"model.vision_backbone.image_vit.transformer.resblocks.17.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
380 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wk.bias": "model-00003-of-00004.safetensors",
|
381 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wk.weight": "model-00003-of-00004.safetensors",
|
382 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wo.bias": "model-00003-of-00004.safetensors",
|
383 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wo.weight": "model-00003-of-00004.safetensors",
|
384 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wq.bias": "model-00003-of-00004.safetensors",
|
385 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wq.weight": "model-00003-of-00004.safetensors",
|
386 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wv.bias": "model-00003-of-00004.safetensors",
|
387 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention.wv.weight": "model-00003-of-00004.safetensors",
|
388 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention_norm.bias": "model-00003-of-00004.safetensors",
|
389 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.attention_norm.weight": "model-00003-of-00004.safetensors",
|
390 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
391 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
392 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
393 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
394 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
395 |
+
"model.vision_backbone.image_vit.transformer.resblocks.18.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
396 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wk.bias": "model-00003-of-00004.safetensors",
|
397 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wk.weight": "model-00003-of-00004.safetensors",
|
398 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wo.bias": "model-00003-of-00004.safetensors",
|
399 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wo.weight": "model-00003-of-00004.safetensors",
|
400 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wq.bias": "model-00003-of-00004.safetensors",
|
401 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wq.weight": "model-00003-of-00004.safetensors",
|
402 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wv.bias": "model-00003-of-00004.safetensors",
|
403 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention.wv.weight": "model-00003-of-00004.safetensors",
|
404 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention_norm.bias": "model-00003-of-00004.safetensors",
|
405 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.attention_norm.weight": "model-00003-of-00004.safetensors",
|
406 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
407 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
408 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
409 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
410 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
411 |
+
"model.vision_backbone.image_vit.transformer.resblocks.19.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
412 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wk.bias": "model-00003-of-00004.safetensors",
|
413 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wk.weight": "model-00003-of-00004.safetensors",
|
414 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wo.bias": "model-00003-of-00004.safetensors",
|
415 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wo.weight": "model-00003-of-00004.safetensors",
|
416 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wq.bias": "model-00003-of-00004.safetensors",
|
417 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wq.weight": "model-00003-of-00004.safetensors",
|
418 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wv.bias": "model-00003-of-00004.safetensors",
|
419 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention.wv.weight": "model-00003-of-00004.safetensors",
|
420 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention_norm.bias": "model-00003-of-00004.safetensors",
|
421 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.attention_norm.weight": "model-00003-of-00004.safetensors",
|
422 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
423 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
424 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
425 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
426 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
427 |
+
"model.vision_backbone.image_vit.transformer.resblocks.2.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
428 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wk.bias": "model-00003-of-00004.safetensors",
|
429 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wk.weight": "model-00003-of-00004.safetensors",
|
430 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wo.bias": "model-00003-of-00004.safetensors",
|
431 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wo.weight": "model-00003-of-00004.safetensors",
|
432 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wq.bias": "model-00003-of-00004.safetensors",
|
433 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wq.weight": "model-00003-of-00004.safetensors",
|
434 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wv.bias": "model-00003-of-00004.safetensors",
|
435 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention.wv.weight": "model-00003-of-00004.safetensors",
|
436 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention_norm.bias": "model-00003-of-00004.safetensors",
|
437 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.attention_norm.weight": "model-00003-of-00004.safetensors",
|
438 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
439 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
440 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
441 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
442 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
443 |
+
"model.vision_backbone.image_vit.transformer.resblocks.20.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
444 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wk.bias": "model-00003-of-00004.safetensors",
|
445 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wk.weight": "model-00003-of-00004.safetensors",
|
446 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wo.bias": "model-00003-of-00004.safetensors",
|
447 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wo.weight": "model-00003-of-00004.safetensors",
|
448 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wq.bias": "model-00003-of-00004.safetensors",
|
449 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wq.weight": "model-00003-of-00004.safetensors",
|
450 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wv.bias": "model-00003-of-00004.safetensors",
|
451 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention.wv.weight": "model-00003-of-00004.safetensors",
|
452 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention_norm.bias": "model-00004-of-00004.safetensors",
|
453 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.attention_norm.weight": "model-00004-of-00004.safetensors",
|
454 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
455 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
456 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
457 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
458 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
459 |
+
"model.vision_backbone.image_vit.transformer.resblocks.21.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
460 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wk.bias": "model-00004-of-00004.safetensors",
|
461 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wk.weight": "model-00004-of-00004.safetensors",
|
462 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wo.bias": "model-00004-of-00004.safetensors",
|
463 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wo.weight": "model-00004-of-00004.safetensors",
|
464 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wq.bias": "model-00004-of-00004.safetensors",
|
465 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wq.weight": "model-00004-of-00004.safetensors",
|
466 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wv.bias": "model-00004-of-00004.safetensors",
|
467 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention.wv.weight": "model-00004-of-00004.safetensors",
|
468 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention_norm.bias": "model-00004-of-00004.safetensors",
|
469 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.attention_norm.weight": "model-00004-of-00004.safetensors",
|
470 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
471 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
472 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
473 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
474 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
475 |
+
"model.vision_backbone.image_vit.transformer.resblocks.22.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
476 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wk.bias": "model-00004-of-00004.safetensors",
|
477 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wk.weight": "model-00004-of-00004.safetensors",
|
478 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wo.bias": "model-00004-of-00004.safetensors",
|
479 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wo.weight": "model-00004-of-00004.safetensors",
|
480 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wq.bias": "model-00004-of-00004.safetensors",
|
481 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wq.weight": "model-00004-of-00004.safetensors",
|
482 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wv.bias": "model-00004-of-00004.safetensors",
|
483 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention.wv.weight": "model-00004-of-00004.safetensors",
|
484 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention_norm.bias": "model-00004-of-00004.safetensors",
|
485 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.attention_norm.weight": "model-00004-of-00004.safetensors",
|
486 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
487 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
488 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
489 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
490 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
491 |
+
"model.vision_backbone.image_vit.transformer.resblocks.23.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
492 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wk.bias": "model-00004-of-00004.safetensors",
|
493 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wk.weight": "model-00004-of-00004.safetensors",
|
494 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wo.bias": "model-00004-of-00004.safetensors",
|
495 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wo.weight": "model-00004-of-00004.safetensors",
|
496 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wq.bias": "model-00004-of-00004.safetensors",
|
497 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wq.weight": "model-00004-of-00004.safetensors",
|
498 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wv.bias": "model-00004-of-00004.safetensors",
|
499 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention.wv.weight": "model-00004-of-00004.safetensors",
|
500 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention_norm.bias": "model-00004-of-00004.safetensors",
|
501 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.attention_norm.weight": "model-00004-of-00004.safetensors",
|
502 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w1.bias": "model-00004-of-00004.safetensors",
|
503 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
|
504 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w2.bias": "model-00004-of-00004.safetensors",
|
505 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
|
506 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.ffn_norm.bias": "model-00004-of-00004.safetensors",
|
507 |
+
"model.vision_backbone.image_vit.transformer.resblocks.24.ffn_norm.weight": "model-00004-of-00004.safetensors",
|
508 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wk.bias": "model-00003-of-00004.safetensors",
|
509 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wk.weight": "model-00003-of-00004.safetensors",
|
510 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wo.bias": "model-00003-of-00004.safetensors",
|
511 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wo.weight": "model-00003-of-00004.safetensors",
|
512 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wq.bias": "model-00003-of-00004.safetensors",
|
513 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wq.weight": "model-00003-of-00004.safetensors",
|
514 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wv.bias": "model-00003-of-00004.safetensors",
|
515 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention.wv.weight": "model-00003-of-00004.safetensors",
|
516 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention_norm.bias": "model-00003-of-00004.safetensors",
|
517 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.attention_norm.weight": "model-00003-of-00004.safetensors",
|
518 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
519 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
520 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
521 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
522 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
523 |
+
"model.vision_backbone.image_vit.transformer.resblocks.3.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
524 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wk.bias": "model-00003-of-00004.safetensors",
|
525 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wk.weight": "model-00003-of-00004.safetensors",
|
526 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wo.bias": "model-00003-of-00004.safetensors",
|
527 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wo.weight": "model-00003-of-00004.safetensors",
|
528 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wq.bias": "model-00003-of-00004.safetensors",
|
529 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wq.weight": "model-00003-of-00004.safetensors",
|
530 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wv.bias": "model-00003-of-00004.safetensors",
|
531 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention.wv.weight": "model-00003-of-00004.safetensors",
|
532 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention_norm.bias": "model-00003-of-00004.safetensors",
|
533 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.attention_norm.weight": "model-00003-of-00004.safetensors",
|
534 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
535 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
536 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
537 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
538 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
539 |
+
"model.vision_backbone.image_vit.transformer.resblocks.4.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
540 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wk.bias": "model-00003-of-00004.safetensors",
|
541 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wk.weight": "model-00003-of-00004.safetensors",
|
542 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wo.bias": "model-00003-of-00004.safetensors",
|
543 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wo.weight": "model-00003-of-00004.safetensors",
|
544 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wq.bias": "model-00003-of-00004.safetensors",
|
545 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wq.weight": "model-00003-of-00004.safetensors",
|
546 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wv.bias": "model-00003-of-00004.safetensors",
|
547 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention.wv.weight": "model-00003-of-00004.safetensors",
|
548 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention_norm.bias": "model-00003-of-00004.safetensors",
|
549 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.attention_norm.weight": "model-00003-of-00004.safetensors",
|
550 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
551 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
552 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
553 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
554 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
555 |
+
"model.vision_backbone.image_vit.transformer.resblocks.5.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
556 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wk.bias": "model-00003-of-00004.safetensors",
|
557 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wk.weight": "model-00003-of-00004.safetensors",
|
558 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wo.bias": "model-00003-of-00004.safetensors",
|
559 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wo.weight": "model-00003-of-00004.safetensors",
|
560 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wq.bias": "model-00003-of-00004.safetensors",
|
561 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wq.weight": "model-00003-of-00004.safetensors",
|
562 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wv.bias": "model-00003-of-00004.safetensors",
|
563 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention.wv.weight": "model-00003-of-00004.safetensors",
|
564 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention_norm.bias": "model-00003-of-00004.safetensors",
|
565 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.attention_norm.weight": "model-00003-of-00004.safetensors",
|
566 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
567 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
568 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
569 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
570 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
571 |
+
"model.vision_backbone.image_vit.transformer.resblocks.6.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
572 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wk.bias": "model-00003-of-00004.safetensors",
|
573 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wk.weight": "model-00003-of-00004.safetensors",
|
574 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wo.bias": "model-00003-of-00004.safetensors",
|
575 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wo.weight": "model-00003-of-00004.safetensors",
|
576 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wq.bias": "model-00003-of-00004.safetensors",
|
577 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wq.weight": "model-00003-of-00004.safetensors",
|
578 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wv.bias": "model-00003-of-00004.safetensors",
|
579 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention.wv.weight": "model-00003-of-00004.safetensors",
|
580 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention_norm.bias": "model-00003-of-00004.safetensors",
|
581 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.attention_norm.weight": "model-00003-of-00004.safetensors",
|
582 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
583 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
584 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
585 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
586 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
587 |
+
"model.vision_backbone.image_vit.transformer.resblocks.7.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
588 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wk.bias": "model-00003-of-00004.safetensors",
|
589 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wk.weight": "model-00003-of-00004.safetensors",
|
590 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wo.bias": "model-00003-of-00004.safetensors",
|
591 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wo.weight": "model-00003-of-00004.safetensors",
|
592 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wq.bias": "model-00003-of-00004.safetensors",
|
593 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wq.weight": "model-00003-of-00004.safetensors",
|
594 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wv.bias": "model-00003-of-00004.safetensors",
|
595 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention.wv.weight": "model-00003-of-00004.safetensors",
|
596 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention_norm.bias": "model-00003-of-00004.safetensors",
|
597 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.attention_norm.weight": "model-00003-of-00004.safetensors",
|
598 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
599 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
600 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
601 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
602 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
603 |
+
"model.vision_backbone.image_vit.transformer.resblocks.8.ffn_norm.weight": "model-00003-of-00004.safetensors",
|
604 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wk.bias": "model-00003-of-00004.safetensors",
|
605 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wk.weight": "model-00003-of-00004.safetensors",
|
606 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wo.bias": "model-00003-of-00004.safetensors",
|
607 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wo.weight": "model-00003-of-00004.safetensors",
|
608 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wq.bias": "model-00003-of-00004.safetensors",
|
609 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wq.weight": "model-00003-of-00004.safetensors",
|
610 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wv.bias": "model-00003-of-00004.safetensors",
|
611 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention.wv.weight": "model-00003-of-00004.safetensors",
|
612 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention_norm.bias": "model-00003-of-00004.safetensors",
|
613 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.attention_norm.weight": "model-00003-of-00004.safetensors",
|
614 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w1.bias": "model-00003-of-00004.safetensors",
|
615 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
|
616 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w2.bias": "model-00003-of-00004.safetensors",
|
617 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
|
618 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.ffn_norm.bias": "model-00003-of-00004.safetensors",
|
619 |
+
"model.vision_backbone.image_vit.transformer.resblocks.9.ffn_norm.weight": "model-00003-of-00004.safetensors"
|
620 |
+
}
|
621 |
+
}
|
modeling_molmoact.py
ADDED
@@ -0,0 +1,2100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from copy import deepcopy
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union, Dict, Any, Sequence, Callable
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
|
10 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoModelForImageTextToText
|
11 |
+
from transformers.activations import ACT2FN
|
12 |
+
from transformers.cache_utils import Cache, DynamicCache
|
13 |
+
from transformers.generation import GenerationMixin
|
14 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
15 |
+
from transformers.generation.utils import GenerateOutput
|
16 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
17 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
18 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward, FlashAttentionKwargs
|
19 |
+
from transformers import GradientCheckpointingLayer
|
20 |
+
from transformers.modeling_outputs import (
|
21 |
+
BaseModelOutput,
|
22 |
+
BaseModelOutputWithPast,
|
23 |
+
BaseModelOutputWithPooling,
|
24 |
+
CausalLMOutputWithPast,
|
25 |
+
)
|
26 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
27 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
28 |
+
from transformers.processing_utils import Unpack
|
29 |
+
from transformers.utils import (
|
30 |
+
ModelOutput,
|
31 |
+
can_return_tuple,
|
32 |
+
is_torch_flex_attn_available,
|
33 |
+
logging,
|
34 |
+
add_start_docstrings,
|
35 |
+
add_start_docstrings_to_model_forward,
|
36 |
+
)
|
37 |
+
|
38 |
+
from .configuration_molmoact import MolmoActConfig, MolmoActVitConfig, MolmoActAdapterConfig, MolmoActLlmConfig
|
39 |
+
|
40 |
+
import re
|
41 |
+
import numpy as np
|
42 |
+
from transformers import Qwen2Tokenizer
|
43 |
+
|
44 |
+
|
45 |
+
if is_torch_flex_attn_available():
|
46 |
+
from torch.nn.attention.flex_attention import BlockMask
|
47 |
+
|
48 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
MOLMO_START_DOCSTRING = r"""
|
55 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
56 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
57 |
+
etc.)
|
58 |
+
|
59 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
60 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
61 |
+
and behavior.
|
62 |
+
|
63 |
+
Parameters:
|
64 |
+
config ([`MolmoActConfig`]):
|
65 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
66 |
+
load the weights associated with the model, only the configuration. Check out the
|
67 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
68 |
+
"""
|
69 |
+
|
70 |
+
|
71 |
+
NUM_RE = re.compile(r'[+-]?(?:\d+(?:\.\d+)?|\.\d+)(?:[eE][+-]?\d+)?$')
|
72 |
+
DEPTH_RE = re.compile(r'<DEPTH_START>(.*?)<DEPTH_END>', re.DOTALL)
|
73 |
+
# One-level-nested [...] matcher: outer block that may contain inner [ ... ] lists
|
74 |
+
OUTER_BLOCK_RE = re.compile(r'\[(?:[^\[\]]|\[[^\[\]]*\])+\]')
|
75 |
+
|
76 |
+
def _is_number(s: str) -> bool:
|
77 |
+
return bool(NUM_RE.match(s))
|
78 |
+
|
79 |
+
def _has_non_ascii(s: str) -> bool:
|
80 |
+
return any(ord(ch) > 127 for ch in s)
|
81 |
+
|
82 |
+
def _to_number(s: str):
|
83 |
+
"""Parse string number to int when possible, else float."""
|
84 |
+
v = float(s)
|
85 |
+
return int(v) if v.is_integer() else v
|
86 |
+
|
87 |
+
def extract_depth_string(text: str, include_tags: bool = False) -> list[str]:
|
88 |
+
"""
|
89 |
+
Return all occurrences of depth strings.
|
90 |
+
If include_tags=True, each item is '<DEPTH_START>...<DEPTH_END>';
|
91 |
+
otherwise each item is just the inner '...'.
|
92 |
+
"""
|
93 |
+
matches = list(DEPTH_RE.finditer(text))
|
94 |
+
if include_tags:
|
95 |
+
return [m.group(0) for m in matches]
|
96 |
+
return [m.group(1) for m in matches]
|
97 |
+
|
98 |
+
def extract_trace_lists(
|
99 |
+
text: str,
|
100 |
+
point_len: int | None = 2, # e.g., 2 for [x,y], 3 for [x,y,z]; None = any length ≥1
|
101 |
+
min_points: int = 1
|
102 |
+
) -> list[list[list[float]]]:
|
103 |
+
"""
|
104 |
+
Extract *numeric* lists-of-lists like [[140,225],[130,212],...].
|
105 |
+
Returns a list of traces; each trace is a list of points (lists of numbers).
|
106 |
+
|
107 |
+
Heuristic:
|
108 |
+
- Find outer [ ... ] blocks that may contain inner lists
|
109 |
+
- Keep blocks where every inner list is fully numeric
|
110 |
+
- Enforce per-point length (point_len) and a minimum number of points (min_points)
|
111 |
+
"""
|
112 |
+
traces: list[list[list[float]]] = []
|
113 |
+
|
114 |
+
# Find outer blocks that can contain nested lists
|
115 |
+
for block in OUTER_BLOCK_RE.findall(text):
|
116 |
+
inner_strs = re.findall(r'\[([^\[\]]+)\]', block) # contents of each inner [...]
|
117 |
+
if len(inner_strs) < min_points:
|
118 |
+
continue
|
119 |
+
|
120 |
+
rows: list[list[float]] = []
|
121 |
+
ok = True
|
122 |
+
for row in inner_strs:
|
123 |
+
parts = [p.strip().strip('"').strip("'") for p in row.split(',')]
|
124 |
+
if point_len is not None and len(parts) != point_len:
|
125 |
+
ok = False
|
126 |
+
break
|
127 |
+
if not all(_is_number(p) for p in parts):
|
128 |
+
ok = False
|
129 |
+
break
|
130 |
+
rows.append([_to_number(p) for p in parts])
|
131 |
+
|
132 |
+
if ok:
|
133 |
+
traces.append(rows)
|
134 |
+
|
135 |
+
return traces
|
136 |
+
|
137 |
+
def extract_action_token_lists(
|
138 |
+
text: str,
|
139 |
+
only_len: int | None = None, # e.g., 7 if you expect 7-D actions
|
140 |
+
require_non_ascii: bool = True # set False if your tokens can be pure ASCII
|
141 |
+
) -> list[list[str]]:
|
142 |
+
"""
|
143 |
+
Extract all [ ... ] groups split by commas, discard numeric lists,
|
144 |
+
and return token lists (quotes stripped, whitespace trimmed).
|
145 |
+
"""
|
146 |
+
lists = []
|
147 |
+
# Match NON-nested bracketed groups: [ ... ] without inner [ or ]
|
148 |
+
for inner in re.findall(r'\[([^\[\]]+)\]', text):
|
149 |
+
parts = [p.strip().strip('"').strip("'") for p in inner.split(',')]
|
150 |
+
|
151 |
+
if only_len is not None and len(parts) != only_len:
|
152 |
+
continue
|
153 |
+
|
154 |
+
# If *all* items are numeric -> not action tokens (like coordinates)
|
155 |
+
if all(_is_number(p) for p in parts):
|
156 |
+
continue
|
157 |
+
|
158 |
+
# Optionally require at least one non-ASCII char across tokens (helps exclude plain words/numbers)
|
159 |
+
if require_non_ascii and not any(_has_non_ascii(p) for p in parts):
|
160 |
+
continue
|
161 |
+
|
162 |
+
lists.append(parts)
|
163 |
+
|
164 |
+
return lists
|
165 |
+
|
166 |
+
|
167 |
+
@dataclass
|
168 |
+
class MolmoActCausalLMOutputWithPast(ModelOutput):
|
169 |
+
"""
|
170 |
+
Base class for MolmoAct causal language model (or autoregressive) outputs.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
174 |
+
Language modeling loss (for next-token prediction).
|
175 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
176 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
177 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
178 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
179 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
180 |
+
|
181 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
182 |
+
`past_key_values` input) to speed up sequential decoding.
|
183 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
184 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
185 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
186 |
+
|
187 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
188 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
189 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
190 |
+
sequence_length)`.
|
191 |
+
|
192 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
193 |
+
heads.
|
194 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
195 |
+
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
|
196 |
+
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
|
197 |
+
"""
|
198 |
+
|
199 |
+
loss: Optional[torch.FloatTensor] = None
|
200 |
+
logits: Optional[torch.FloatTensor] = None
|
201 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
202 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
203 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
204 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
205 |
+
|
206 |
+
|
207 |
+
@dataclass
|
208 |
+
class MolmoActModelOutputWithPast(BaseModelOutputWithPast):
|
209 |
+
"""
|
210 |
+
Base class for MolmoAct outputs, with hidden states and attentions.
|
211 |
+
|
212 |
+
Args:
|
213 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
214 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
215 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
216 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
217 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
218 |
+
|
219 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
220 |
+
`past_key_values` input) to speed up sequential decoding.
|
221 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
222 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
223 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
224 |
+
|
225 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
226 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
227 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
228 |
+
sequence_length)`.
|
229 |
+
|
230 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
231 |
+
heads.
|
232 |
+
image_hidden_states (`torch.FloatTensor`, *optional*):
|
233 |
+
A `torch.FloatTensor` of size `(batch_num_patches, hidden_size)`.
|
234 |
+
image_hidden_states of the model produced by the vision backbone
|
235 |
+
"""
|
236 |
+
|
237 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
238 |
+
logits: Optional[torch.FloatTensor] = None
|
239 |
+
|
240 |
+
|
241 |
+
class MolmoActPreTrainedModel(PreTrainedModel):
|
242 |
+
config_class = MolmoActLlmConfig
|
243 |
+
base_model_prefix = "model"
|
244 |
+
supports_gradient_checkpointing = True
|
245 |
+
_no_split_modules = ["MolmoActDecoderLayer", "MolmoActPostNormDecoderLayer"]
|
246 |
+
_skip_keys_device_placement = ["past_key_values"]
|
247 |
+
_supports_flash_attn_2 = True
|
248 |
+
_supports_sdpa = True
|
249 |
+
_supports_flex_attn = False
|
250 |
+
_supports_cache_class = True
|
251 |
+
_supports_quantized_cache = True
|
252 |
+
_supports_static_cache = True
|
253 |
+
_supports_attention_backend = True
|
254 |
+
|
255 |
+
def _init_weights(self, module):
|
256 |
+
std = self.config.initializer_range
|
257 |
+
if isinstance(module, (nn.Linear,)):
|
258 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
259 |
+
if module.bias is not None:
|
260 |
+
module.bias.data.zero_()
|
261 |
+
elif isinstance(module, MolmoActEmbedding):
|
262 |
+
module.embedding.data.normal_(mean=0.0, std=std)
|
263 |
+
module.new_embedding.data.normal_(mean=0.0, std=std)
|
264 |
+
elif isinstance(module, nn.Embedding):
|
265 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
266 |
+
if module.padding_idx is not None:
|
267 |
+
module.weight.data[module.padding_idx].zero_()
|
268 |
+
elif isinstance(module, MolmoActRMSNorm):
|
269 |
+
module.weight.data.fill_(1.0)
|
270 |
+
elif isinstance(module, nn.LayerNorm):
|
271 |
+
module.weight.data.fill_(1.0)
|
272 |
+
if module.bias is not None:
|
273 |
+
module.bias.data.zero_()
|
274 |
+
|
275 |
+
|
276 |
+
class ViTMLP(nn.Module):
|
277 |
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str, device: Union[str, torch.device] = None):
|
278 |
+
super().__init__()
|
279 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=True, device=device)
|
280 |
+
self.act = ACT2FN[hidden_act]
|
281 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=True, device=device)
|
282 |
+
|
283 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
284 |
+
return self.w2(self.act(self.w1(x)))
|
285 |
+
|
286 |
+
|
287 |
+
class ViTMultiHeadDotProductAttention(nn.Module):
|
288 |
+
def __init__(
|
289 |
+
self,
|
290 |
+
hidden_size: int,
|
291 |
+
num_heads: int,
|
292 |
+
num_key_value_heads: int,
|
293 |
+
head_dim: int,
|
294 |
+
use_bias: bool = True,
|
295 |
+
input_dim: Optional[int] = None,
|
296 |
+
float32_attention: bool = True,
|
297 |
+
attention_dropout: float = 0.0,
|
298 |
+
residual_dropout: float = 0.0,
|
299 |
+
device: Union[str, torch.device] = None,
|
300 |
+
attn_implementation: str = "eager",
|
301 |
+
):
|
302 |
+
super().__init__()
|
303 |
+
|
304 |
+
self.hidden_size = hidden_size
|
305 |
+
self.num_heads = num_heads
|
306 |
+
self.head_dim = head_dim
|
307 |
+
self.num_key_value_heads = num_key_value_heads
|
308 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
309 |
+
self.attn_implementation = attn_implementation
|
310 |
+
self.is_causal = False
|
311 |
+
|
312 |
+
input_dim = input_dim or hidden_size
|
313 |
+
|
314 |
+
self.wq = nn.Linear(
|
315 |
+
input_dim,
|
316 |
+
self.num_heads * self.head_dim,
|
317 |
+
bias=use_bias,
|
318 |
+
device=device,
|
319 |
+
)
|
320 |
+
self.wk = nn.Linear(
|
321 |
+
input_dim,
|
322 |
+
self.num_key_value_heads * self.head_dim,
|
323 |
+
bias=use_bias,
|
324 |
+
device=device,
|
325 |
+
)
|
326 |
+
self.wv = nn.Linear(
|
327 |
+
input_dim,
|
328 |
+
self.num_key_value_heads * self.head_dim,
|
329 |
+
bias=use_bias,
|
330 |
+
device=device,
|
331 |
+
)
|
332 |
+
self.wo = nn.Linear(
|
333 |
+
self.num_heads * self.head_dim,
|
334 |
+
self.hidden_size,
|
335 |
+
)
|
336 |
+
self.float32_attention = float32_attention
|
337 |
+
self.attention_dropout = attention_dropout
|
338 |
+
self.residual_dropout = nn.Dropout(residual_dropout)
|
339 |
+
|
340 |
+
def _split_heads(self, hidden_states, num_heads) -> torch.Tensor:
|
341 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
|
342 |
+
|
343 |
+
def _merge_heads(self, hidden_states) -> torch.Tensor:
|
344 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,))
|
345 |
+
|
346 |
+
def forward(
|
347 |
+
self,
|
348 |
+
inputs_q: torch.Tensor,
|
349 |
+
inputs_kv: Optional[torch.Tensor] = None,
|
350 |
+
attn_mask: Optional[torch.Tensor] = None,
|
351 |
+
) -> torch.Tensor:
|
352 |
+
|
353 |
+
if inputs_kv is not None:
|
354 |
+
inputs_k = inputs_kv
|
355 |
+
inputs_v = inputs_kv
|
356 |
+
else:
|
357 |
+
inputs_k = inputs_q
|
358 |
+
inputs_v = inputs_q
|
359 |
+
|
360 |
+
xq, xk, xv = self.wq(inputs_q), self.wk(inputs_k), self.wv(inputs_v)
|
361 |
+
|
362 |
+
xq = self._split_heads(xq, self.num_heads)
|
363 |
+
xk = self._split_heads(xk, self.num_key_value_heads)
|
364 |
+
xv = self._split_heads(xv, self.num_key_value_heads)
|
365 |
+
|
366 |
+
if self.num_heads != self.num_key_value_heads:
|
367 |
+
xk = xk.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
368 |
+
xv = xv.repeat_interleave(self.num_key_value_groups, dim=2, output_size=self.num_heads)
|
369 |
+
|
370 |
+
og_dtype = xq.dtype
|
371 |
+
|
372 |
+
if self.float32_attention:
|
373 |
+
xq = xq.to(torch.float)
|
374 |
+
xk = xk.to(torch.float)
|
375 |
+
|
376 |
+
dropout_p = 0.0 if not self.training else self.attention_dropout
|
377 |
+
|
378 |
+
if self.attn_implementation == "eager":
|
379 |
+
attn_weights = torch.einsum("...qhd,...khd->...hqk", xq / math.sqrt(xq.size(-1)), xk)
|
380 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
381 |
+
attn_weights = F.dropout(
|
382 |
+
attn_weights,
|
383 |
+
p=dropout_p,
|
384 |
+
training=self.training
|
385 |
+
)
|
386 |
+
attn_output = torch.einsum("...hqk,...khd->...qhd", attn_weights.to(xv.dtype), xv)
|
387 |
+
|
388 |
+
elif self.attn_implementation == "sdpa":
|
389 |
+
if not torch.is_autocast_enabled():
|
390 |
+
xv = xv.to(torch.float)
|
391 |
+
|
392 |
+
attn_output = F.scaled_dot_product_attention(
|
393 |
+
xq.transpose(1, 2).contiguous(),
|
394 |
+
xk.transpose(1, 2).contiguous(),
|
395 |
+
xv.transpose(1, 2).contiguous(),
|
396 |
+
attn_mask=attn_mask,
|
397 |
+
is_causal=False,
|
398 |
+
dropout_p=dropout_p,
|
399 |
+
).transpose(1, 2)
|
400 |
+
|
401 |
+
elif self.attn_implementation == "flash_attention_2":
|
402 |
+
assert not self.config.float32_attention
|
403 |
+
# Downcast in case we are running with fp32 hidden states
|
404 |
+
attn_output = _flash_attention_forward(
|
405 |
+
xq.transpose(1, 2).to(torch.bfloat16),
|
406 |
+
xk.transpose(1, 2).to(torch.bfloat16),
|
407 |
+
xv.transpose(1, 2).to(torch.bfloat16),
|
408 |
+
attention_mask=None,
|
409 |
+
query_length=inputs_q.shape[1],
|
410 |
+
is_causal=False,
|
411 |
+
dropout=dropout_p,
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
raise ValueError(f"Attention implementation {self.attn_implementation} not supported")
|
415 |
+
|
416 |
+
attn_output = attn_output.to(og_dtype)
|
417 |
+
attn_output = self._merge_heads(attn_output)
|
418 |
+
attn_output = self.wo(attn_output)
|
419 |
+
attn_output = self.residual_dropout(attn_output)
|
420 |
+
|
421 |
+
return attn_output
|
422 |
+
|
423 |
+
|
424 |
+
class MolmoActVisionBlock(nn.Module):
|
425 |
+
|
426 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
427 |
+
super().__init__()
|
428 |
+
self.attention = ViTMultiHeadDotProductAttention(
|
429 |
+
hidden_size=config.hidden_size,
|
430 |
+
num_heads=config.num_attention_heads,
|
431 |
+
num_key_value_heads=config.num_key_value_heads,
|
432 |
+
head_dim=config.head_dim,
|
433 |
+
float32_attention=config.float32_attention,
|
434 |
+
attention_dropout=config.attention_dropout,
|
435 |
+
residual_dropout=config.residual_dropout,
|
436 |
+
device=device,
|
437 |
+
attn_implementation=config._attn_implementation,
|
438 |
+
)
|
439 |
+
self.feed_forward = ViTMLP(config.hidden_size, config.intermediate_size, config.hidden_act, device=device)
|
440 |
+
self.attention_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device)
|
441 |
+
self.ffn_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device)
|
442 |
+
|
443 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
444 |
+
x = x + self.attention(self.attention_norm(x))
|
445 |
+
x = x + self.feed_forward(self.ffn_norm(x))
|
446 |
+
return x
|
447 |
+
|
448 |
+
|
449 |
+
class MolmoActVisionBlockCollection(nn.Module):
|
450 |
+
|
451 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
452 |
+
super().__init__()
|
453 |
+
self.conifg = config
|
454 |
+
self.resblocks = nn.ModuleList([
|
455 |
+
MolmoActVisionBlock(config, device) for _ in range(config.num_hidden_layers)
|
456 |
+
])
|
457 |
+
|
458 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
459 |
+
hidden_states = []
|
460 |
+
for r in self.resblocks:
|
461 |
+
x = r(x)
|
462 |
+
hidden_states.append(x)
|
463 |
+
return hidden_states
|
464 |
+
|
465 |
+
|
466 |
+
def _expand_token(token, batch_size: int):
|
467 |
+
return token.view(1, 1, -1).expand(batch_size, -1, -1)
|
468 |
+
|
469 |
+
|
470 |
+
class MolmoActVisionTransformer(nn.Module):
|
471 |
+
|
472 |
+
def __init__(self, config: MolmoActVitConfig, device: Union[str, torch.device] = None):
|
473 |
+
super().__init__()
|
474 |
+
self.config = config
|
475 |
+
|
476 |
+
self.scale = config.hidden_size ** -0.5
|
477 |
+
|
478 |
+
# optional CLS
|
479 |
+
self.num_prefix_tokens: int = 1 if config.use_cls_token else 0
|
480 |
+
if config.use_cls_token:
|
481 |
+
self.class_embedding = nn.Parameter(
|
482 |
+
torch.zeros(config.hidden_size, device=device)
|
483 |
+
)
|
484 |
+
|
485 |
+
# positional embeddings
|
486 |
+
self.positional_embedding = nn.Parameter(
|
487 |
+
torch.zeros(config.image_num_pos, config.hidden_size, device=device),
|
488 |
+
)
|
489 |
+
|
490 |
+
image_patch_size = config.image_patch_size
|
491 |
+
self.patch_embedding = nn.Linear(
|
492 |
+
image_patch_size * image_patch_size * 3,
|
493 |
+
config.hidden_size,
|
494 |
+
bias=config.patch_bias,
|
495 |
+
device=device,
|
496 |
+
)
|
497 |
+
|
498 |
+
# optional pre-LN
|
499 |
+
self.pre_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, device=device) \
|
500 |
+
if config.pre_layernorm else None
|
501 |
+
|
502 |
+
self.transformer = MolmoActVisionBlockCollection(config, device)
|
503 |
+
|
504 |
+
def add_pos_emb(self, x: torch.Tensor, patch_num: int) -> torch.Tensor:
|
505 |
+
pos_emb = self.positional_embedding
|
506 |
+
if self.config.use_cls_token:
|
507 |
+
cls_pos, pos_emb = pos_emb[:1], pos_emb[1:] # split out CLS
|
508 |
+
|
509 |
+
pos_emb = pos_emb.reshape(
|
510 |
+
(int(math.sqrt(pos_emb.shape[0])), int(math.sqrt(pos_emb.shape[0])), pos_emb.shape[1])
|
511 |
+
)
|
512 |
+
|
513 |
+
(patch_num_0, patch_num_1) = patch_num
|
514 |
+
|
515 |
+
if pos_emb.shape[0] != patch_num_0 or pos_emb.shape[1] != patch_num_1:
|
516 |
+
# Dervied from https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
|
517 |
+
# antialias: default True in jax.image.resize
|
518 |
+
pos_emb = pos_emb.unsqueeze(0).permute(0, 3, 1, 2)
|
519 |
+
pos_emb = F.interpolate(
|
520 |
+
pos_emb, size=(patch_num_0, patch_num_1), mode="bicubic", align_corners=False, antialias=True,
|
521 |
+
)
|
522 |
+
pos_emb = pos_emb.permute(0, 2, 3, 1).squeeze(0)
|
523 |
+
|
524 |
+
pos_emb = pos_emb.reshape(-1, pos_emb.shape[-1])
|
525 |
+
|
526 |
+
if self.config.use_cls_token:
|
527 |
+
x = x + torch.cat([cls_pos[None, :, :], pos_emb[None, :, :]], dim=1).to(x.dtype)
|
528 |
+
else:
|
529 |
+
x = x + pos_emb[None, :, :].to(x.dtype)
|
530 |
+
|
531 |
+
return x
|
532 |
+
|
533 |
+
def forward(self, x: torch.Tensor, patch_num: int = None) -> List[torch.Tensor]:
|
534 |
+
"""
|
535 |
+
: param x: (batch_size, num_patch, n_pixels)
|
536 |
+
"""
|
537 |
+
if patch_num is None:
|
538 |
+
patch_num = self.config.image_num_patch
|
539 |
+
|
540 |
+
B, N, D = x.shape
|
541 |
+
|
542 |
+
x = self.patch_embedding(x)
|
543 |
+
|
544 |
+
if self.config.use_cls_token:
|
545 |
+
x = torch.cat([_expand_token(self.class_embedding, x.size(0)).to(x.dtype), x], dim=1)
|
546 |
+
|
547 |
+
# class embeddings and positional embeddings
|
548 |
+
x = self.add_pos_emb(x, patch_num)
|
549 |
+
|
550 |
+
if self.pre_ln is not None:
|
551 |
+
x = self.pre_ln(x)
|
552 |
+
|
553 |
+
hidden_states = self.transformer(x)
|
554 |
+
return hidden_states
|
555 |
+
|
556 |
+
|
557 |
+
class ImageProjectorMLP(nn.Module):
|
558 |
+
|
559 |
+
def __init__(
|
560 |
+
self,
|
561 |
+
input_dim: int,
|
562 |
+
hidden_dim: int,
|
563 |
+
output_dim: int,
|
564 |
+
hidden_act: str,
|
565 |
+
device: Union[str, torch.device] = None,
|
566 |
+
):
|
567 |
+
super().__init__()
|
568 |
+
self.w1 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
|
569 |
+
self.w2 = nn.Linear(hidden_dim, output_dim, bias=False, device=device)
|
570 |
+
self.w3 = nn.Linear(input_dim, hidden_dim, bias=False, device=device)
|
571 |
+
self.act = ACT2FN[hidden_act]
|
572 |
+
|
573 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
574 |
+
return self.w2(self.act(self.w1(x)) * self.w3(x))
|
575 |
+
|
576 |
+
|
577 |
+
class MolmoActVisionBackbone(nn.Module):
|
578 |
+
def __init__(self, vit_config: MolmoActVitConfig, adapter_config: MolmoActAdapterConfig):
|
579 |
+
super().__init__()
|
580 |
+
self.vit_config = vit_config
|
581 |
+
self.adapter_config = adapter_config
|
582 |
+
|
583 |
+
self.vit_layers = []
|
584 |
+
for layer in adapter_config.vit_layers:
|
585 |
+
if layer >= 0:
|
586 |
+
self.vit_layers.append(layer)
|
587 |
+
else:
|
588 |
+
self.vit_layers.append(layer + vit_config.num_hidden_layers)
|
589 |
+
|
590 |
+
last_layer_needed = max(self.vit_layers) + 1
|
591 |
+
if last_layer_needed < vit_config.num_hidden_layers:
|
592 |
+
new_vit_config = deepcopy(vit_config)
|
593 |
+
new_vit_config.num_hidden_layers = last_layer_needed
|
594 |
+
self.image_vit = MolmoActVisionTransformer(new_vit_config)
|
595 |
+
else:
|
596 |
+
self.image_vit = MolmoActVisionTransformer(vit_config)
|
597 |
+
|
598 |
+
self.num_prefix_tokens: int = self.image_vit.num_prefix_tokens
|
599 |
+
|
600 |
+
# optional pad_embed
|
601 |
+
self.pad_embed = None
|
602 |
+
if adapter_config.image_padding_embed == "pad_and_partial_pad":
|
603 |
+
pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers)
|
604 |
+
self.pad_embed = nn.Parameter(torch.zeros((2, pool_dim)))
|
605 |
+
|
606 |
+
pool_dim = vit_config.hidden_size * len(adapter_config.vit_layers)
|
607 |
+
self.image_pooling_2d = ViTMultiHeadDotProductAttention(
|
608 |
+
hidden_size=adapter_config.hidden_size,
|
609 |
+
num_heads=adapter_config.num_attention_heads,
|
610 |
+
num_key_value_heads=adapter_config.num_key_value_heads,
|
611 |
+
head_dim=adapter_config.head_dim,
|
612 |
+
input_dim=pool_dim,
|
613 |
+
float32_attention=adapter_config.float32_attention,
|
614 |
+
attention_dropout=adapter_config.attention_dropout,
|
615 |
+
residual_dropout=adapter_config.residual_dropout,
|
616 |
+
attn_implementation=adapter_config._attn_implementation,
|
617 |
+
)
|
618 |
+
self.image_projector = ImageProjectorMLP(
|
619 |
+
adapter_config.hidden_size,
|
620 |
+
adapter_config.intermediate_size,
|
621 |
+
adapter_config.text_hidden_size,
|
622 |
+
adapter_config.hidden_act,
|
623 |
+
)
|
624 |
+
self.image_feature_dropout = nn.Dropout(adapter_config.image_feature_dropout)
|
625 |
+
|
626 |
+
def encode_image(self, images: torch.Tensor) -> torch.Tensor:
|
627 |
+
"""
|
628 |
+
: param images: (batch_size, num_crops, num_patch, n_pixels)
|
629 |
+
"""
|
630 |
+
B, T, N, D = images.shape
|
631 |
+
images = images.view(B * T, N, D)
|
632 |
+
image_features = self.image_vit(images)
|
633 |
+
|
634 |
+
features = []
|
635 |
+
for layer in self.vit_layers:
|
636 |
+
features.append(image_features[layer])
|
637 |
+
image_features = torch.cat(features, dim=-1)
|
638 |
+
|
639 |
+
if self.num_prefix_tokens > 0:
|
640 |
+
image_features = image_features[:, 1:]
|
641 |
+
image_features = image_features.view(B, T, N, -1)
|
642 |
+
return image_features
|
643 |
+
|
644 |
+
@property
|
645 |
+
def dtype(self) -> torch.dtype:
|
646 |
+
return self.image_vit.patch_embedding.weight.dtype
|
647 |
+
|
648 |
+
@property
|
649 |
+
def device(self) -> torch.device:
|
650 |
+
return self.image_vit.patch_embedding.weight.device
|
651 |
+
|
652 |
+
def forward(
|
653 |
+
self,
|
654 |
+
images: torch.Tensor,
|
655 |
+
pooled_patches_idx: torch.Tensor,
|
656 |
+
image_masks: torch.Tensor = None,
|
657 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
658 |
+
|
659 |
+
# image_features: (batch_size, num_crops(=num_image), num_patch, nximage_emb_dim)
|
660 |
+
batch_size, num_image = images.shape[:2]
|
661 |
+
images = images.to(device=self.device, dtype=self.dtype)
|
662 |
+
image_features = self.encode_image(images)
|
663 |
+
|
664 |
+
# optional padding embeddings
|
665 |
+
if self.pad_embed is not None and image_masks is not None:
|
666 |
+
image_masks = image_masks.to(device=self.device)
|
667 |
+
all_pad = (image_masks == 0).to(image_features.dtype)
|
668 |
+
partial = torch.logical_and(image_masks < 1, ~ (image_masks == 0)).to(image_features.dtype)
|
669 |
+
image_features = image_features + self.pad_embed[0][None,None,None,:] * all_pad[...,None] \
|
670 |
+
+ self.pad_embed[1][None,None,None,:] * partial[...,None]
|
671 |
+
|
672 |
+
image_features = self.image_feature_dropout(image_features)
|
673 |
+
dim = image_features.shape[-1]
|
674 |
+
|
675 |
+
valid = pooled_patches_idx >= 0
|
676 |
+
valid_token = torch.any(valid, -1)
|
677 |
+
|
678 |
+
# Use `pooled_patches_idx` to arange the features for image pooling
|
679 |
+
batch_idx = torch.arange(pooled_patches_idx.shape[0], dtype=torch.long, device=pooled_patches_idx.device)
|
680 |
+
batch_idx = torch.tile(batch_idx.view(batch_size, 1, 1), [1, pooled_patches_idx.shape[1], pooled_patches_idx.shape[2]])
|
681 |
+
|
682 |
+
# Now [batch, num_high_res_features, pool_dim, dim]
|
683 |
+
to_pool = image_features.reshape(batch_size, -1, dim)[batch_idx, torch.clip(pooled_patches_idx, 0)]
|
684 |
+
to_pool = to_pool * valid.to(self.dtype)[:, :, :, None]
|
685 |
+
to_pool = to_pool.reshape([-1, pooled_patches_idx.shape[-1], dim])
|
686 |
+
|
687 |
+
query = to_pool.mean(-2, keepdim=True)
|
688 |
+
pooled_features = self.image_pooling_2d(query, to_pool)
|
689 |
+
pooled_features = pooled_features.reshape([batch_size, -1, pooled_features.shape[-1]])
|
690 |
+
|
691 |
+
# MLP layer to map the feature.
|
692 |
+
pooled_features = self.image_projector(pooled_features)
|
693 |
+
return pooled_features.view(-1, pooled_features.shape[-1])[valid_token.flatten()]
|
694 |
+
|
695 |
+
|
696 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
697 |
+
def rotate_half(x):
|
698 |
+
"""Rotates half the hidden dims of the input."""
|
699 |
+
x1 = x[..., : x.shape[-1] // 2]
|
700 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
701 |
+
return torch.cat((-x2, x1), dim=-1)
|
702 |
+
|
703 |
+
|
704 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
705 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
706 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
707 |
+
|
708 |
+
Args:
|
709 |
+
q (`torch.Tensor`): The query tensor.
|
710 |
+
k (`torch.Tensor`): The key tensor.
|
711 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
712 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
713 |
+
position_ids (`torch.Tensor`, *optional*):
|
714 |
+
Deprecated and unused.
|
715 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
716 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
717 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
718 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
719 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
720 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
721 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
722 |
+
Returns:
|
723 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
724 |
+
"""
|
725 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
726 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
727 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
728 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
729 |
+
return q_embed, k_embed
|
730 |
+
|
731 |
+
|
732 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding
|
733 |
+
class MolmoActRotaryEmbedding(nn.Module):
|
734 |
+
|
735 |
+
def __init__(self, config: MolmoActLlmConfig, device: Union[str, torch.device] = None):
|
736 |
+
super().__init__()
|
737 |
+
# BC: "rope_type" was originally "type"
|
738 |
+
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
739 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
740 |
+
else:
|
741 |
+
self.rope_type = "default"
|
742 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
743 |
+
self.original_max_seq_len = config.max_position_embeddings
|
744 |
+
|
745 |
+
self.config = config
|
746 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
747 |
+
|
748 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
749 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
750 |
+
self.original_inv_freq = self.inv_freq
|
751 |
+
|
752 |
+
@torch.no_grad()
|
753 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
754 |
+
def forward(self, x, position_ids: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
755 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
756 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
757 |
+
|
758 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
759 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
760 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
761 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
762 |
+
cos = emb.cos() * self.attention_scaling
|
763 |
+
sin = emb.sin() * self.attention_scaling
|
764 |
+
|
765 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
766 |
+
|
767 |
+
|
768 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
769 |
+
class MolmoActRMSNorm(nn.Module):
|
770 |
+
|
771 |
+
def __init__(
|
772 |
+
self,
|
773 |
+
size: int,
|
774 |
+
eps: float = 1e-6,
|
775 |
+
device: Union[str, torch.device] = None,
|
776 |
+
):
|
777 |
+
super().__init__()
|
778 |
+
self.weight = nn.Parameter(torch.ones(size, device=device))
|
779 |
+
self.eps = eps
|
780 |
+
|
781 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
782 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
783 |
+
og_dtype = x.dtype
|
784 |
+
x = x.to(torch.float32)
|
785 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
786 |
+
x = x * torch.rsqrt(variance + self.eps)
|
787 |
+
x = x.to(og_dtype)
|
788 |
+
|
789 |
+
return self.weight * x
|
790 |
+
|
791 |
+
def extra_repr(self):
|
792 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
793 |
+
|
794 |
+
|
795 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
796 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
797 |
+
"""
|
798 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
799 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
800 |
+
"""
|
801 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
802 |
+
if n_rep == 1:
|
803 |
+
return hidden_states
|
804 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
805 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
806 |
+
|
807 |
+
|
808 |
+
def eager_attention_forward(
|
809 |
+
module: nn.Module,
|
810 |
+
query: torch.Tensor,
|
811 |
+
key: torch.Tensor,
|
812 |
+
value: torch.Tensor,
|
813 |
+
attention_mask: Optional[torch.Tensor],
|
814 |
+
scaling: float,
|
815 |
+
dropout: float = 0.0,
|
816 |
+
**kwargs,
|
817 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
818 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
819 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
820 |
+
|
821 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
822 |
+
if attention_mask is not None:
|
823 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
824 |
+
attn_weights = attn_weights + causal_mask
|
825 |
+
|
826 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
827 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
828 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
829 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
830 |
+
|
831 |
+
return attn_output, attn_weights
|
832 |
+
|
833 |
+
|
834 |
+
class MolmoActAttention(nn.Module):
|
835 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
836 |
+
|
837 |
+
# copied from transformers.models.llama.modeling_llama.LlamaAttention.__init__ with Llama->MolmoAct
|
838 |
+
def __init__(self, config: MolmoActLlmConfig, layer_idx: Optional[int] = None) -> None:
|
839 |
+
super().__init__()
|
840 |
+
self.config = config
|
841 |
+
self.layer_idx = layer_idx
|
842 |
+
if layer_idx is None:
|
843 |
+
logger.warning_once(
|
844 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
845 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
846 |
+
"when creating this class."
|
847 |
+
)
|
848 |
+
|
849 |
+
self.num_heads = config.num_attention_heads
|
850 |
+
self.num_key_value_heads = config.num_key_value_heads
|
851 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
852 |
+
self.head_dim = config.head_dim
|
853 |
+
self.scaling = self.head_dim**-0.5
|
854 |
+
self.is_causal = True
|
855 |
+
|
856 |
+
if (config.head_dim * config.num_attention_heads) != config.hidden_size:
|
857 |
+
raise ValueError(
|
858 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {config.hidden_size}"
|
859 |
+
f" and `num_attention_heads`: {config.num_attention_heads})."
|
860 |
+
)
|
861 |
+
|
862 |
+
self.fused_dims = (
|
863 |
+
config.hidden_size,
|
864 |
+
config.head_dim * config.num_key_value_heads,
|
865 |
+
config.head_dim * config.num_key_value_heads,
|
866 |
+
)
|
867 |
+
self.att_proj = nn.Linear(
|
868 |
+
config.hidden_size,
|
869 |
+
sum(self.fused_dims),
|
870 |
+
bias=config.qkv_bias,
|
871 |
+
)
|
872 |
+
|
873 |
+
# Layer norms.
|
874 |
+
self.k_norm: Optional[MolmoActRMSNorm] = None
|
875 |
+
self.q_norm: Optional[MolmoActRMSNorm] = None
|
876 |
+
self.qk_norm_type: Optional[str] = None
|
877 |
+
if config.use_qk_norm:
|
878 |
+
k_norm_size = (
|
879 |
+
config.head_dim
|
880 |
+
if config.qk_norm_type == "qwen3" else
|
881 |
+
config.num_key_value_heads * config.head_dim
|
882 |
+
)
|
883 |
+
self.k_norm = MolmoActRMSNorm(k_norm_size, eps=config.layer_norm_eps)
|
884 |
+
q_norm_size = (
|
885 |
+
config.head_dim
|
886 |
+
if config.qk_norm_type == "qwen3" else
|
887 |
+
config.num_attention_heads * config.head_dim
|
888 |
+
)
|
889 |
+
self.q_norm = MolmoActRMSNorm(q_norm_size, eps=config.layer_norm_eps)
|
890 |
+
self.qk_norm_type = config.qk_norm_type
|
891 |
+
|
892 |
+
self.attention_dropout = config.attention_dropout
|
893 |
+
|
894 |
+
self.attn_out = nn.Linear(
|
895 |
+
config.hidden_size,
|
896 |
+
config.hidden_size,
|
897 |
+
bias=False,
|
898 |
+
)
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
hidden_states: torch.Tensor,
|
903 |
+
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
|
904 |
+
attention_mask: Optional[torch.Tensor],
|
905 |
+
past_key_value: Optional[Cache] = None,
|
906 |
+
cache_position: Optional[torch.LongTensor] = None,
|
907 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
908 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
909 |
+
input_shape = hidden_states.shape[:-1]
|
910 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
911 |
+
|
912 |
+
qkv = self.att_proj(hidden_states)
|
913 |
+
query_states, key_states, value_states = qkv.split(self.fused_dims, dim=-1)
|
914 |
+
value_states = value_states.view(hidden_shape)
|
915 |
+
|
916 |
+
# Optionally apply layer norm to keys and queries.
|
917 |
+
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type != "qwen3":
|
918 |
+
query_states = self.q_norm(query_states)
|
919 |
+
key_states = self.k_norm(key_states)
|
920 |
+
|
921 |
+
query_states = query_states.view(hidden_shape)
|
922 |
+
key_states = key_states.view(hidden_shape)
|
923 |
+
if self.q_norm is not None and self.k_norm is not None and self.qk_norm_type == "qwen3":
|
924 |
+
query_states = self.q_norm(query_states)
|
925 |
+
key_states = self.k_norm(key_states)
|
926 |
+
query_states = query_states.transpose(1, 2)
|
927 |
+
key_states = key_states.transpose(1, 2)
|
928 |
+
value_states = value_states.transpose(1, 2)
|
929 |
+
|
930 |
+
cos, sin = position_embeddings
|
931 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
932 |
+
|
933 |
+
if past_key_value is not None:
|
934 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
935 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
936 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
937 |
+
|
938 |
+
attention_interface: Callable = eager_attention_forward
|
939 |
+
if self.config._attn_implementation != "eager":
|
940 |
+
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
941 |
+
logger.warning_once(
|
942 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
943 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
944 |
+
)
|
945 |
+
else:
|
946 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
947 |
+
|
948 |
+
attn_output, attn_weights = attention_interface(
|
949 |
+
self,
|
950 |
+
query_states,
|
951 |
+
key_states,
|
952 |
+
value_states,
|
953 |
+
attention_mask,
|
954 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
955 |
+
scaling=self.scaling,
|
956 |
+
**kwargs,
|
957 |
+
)
|
958 |
+
|
959 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
960 |
+
attn_output = self.attn_out(attn_output)
|
961 |
+
|
962 |
+
return attn_output, attn_weights
|
963 |
+
|
964 |
+
|
965 |
+
class LanguageModelMLP(nn.Module):
|
966 |
+
|
967 |
+
def __init__(
|
968 |
+
self,
|
969 |
+
input_dim: int,
|
970 |
+
intermediate_size: int,
|
971 |
+
hidden_act: str,
|
972 |
+
device: Union[str, torch.device] = None,
|
973 |
+
):
|
974 |
+
super().__init__()
|
975 |
+
self.ff_proj = nn.Linear(input_dim, intermediate_size * 2, bias=False, device=device)
|
976 |
+
self.ff_out = nn.Linear(intermediate_size, input_dim, bias=False, device=device)
|
977 |
+
self.act = ACT2FN[hidden_act]
|
978 |
+
|
979 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
980 |
+
x = self.ff_proj(x)
|
981 |
+
x, gate = x.chunk(2, dim=-1)
|
982 |
+
x = self.act(gate) * x
|
983 |
+
x = self.ff_out(x)
|
984 |
+
return x
|
985 |
+
|
986 |
+
|
987 |
+
class MolmoActDecoderLayer(GradientCheckpointingLayer):
|
988 |
+
|
989 |
+
def __init__(
|
990 |
+
self,
|
991 |
+
config: MolmoActLlmConfig,
|
992 |
+
layer_idx: Optional[int] = None,
|
993 |
+
device: Union[str, torch.device] = None
|
994 |
+
):
|
995 |
+
super().__init__()
|
996 |
+
self.config = config
|
997 |
+
|
998 |
+
self.self_attn = MolmoActAttention(config, layer_idx)
|
999 |
+
self.attn_norm = MolmoActRMSNorm(
|
1000 |
+
config.hidden_size, eps=config.layer_norm_eps, device=device)
|
1001 |
+
self.dropout = nn.Dropout(config.residual_dropout)
|
1002 |
+
self.mlp = LanguageModelMLP(
|
1003 |
+
config.hidden_size, config.intermediate_size, config.hidden_act, device=device)
|
1004 |
+
self.ff_norm = MolmoActRMSNorm(
|
1005 |
+
config.hidden_size, eps=config.layer_norm_eps, device=device)
|
1006 |
+
|
1007 |
+
def forward(
|
1008 |
+
self,
|
1009 |
+
hidden_states: torch.Tensor,
|
1010 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1011 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1012 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1013 |
+
output_attentions: Optional[bool] = False,
|
1014 |
+
use_cache: Optional[bool] = False,
|
1015 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1016 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
1017 |
+
**kwargs,
|
1018 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1019 |
+
"""
|
1020 |
+
Args:
|
1021 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1022 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1023 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1024 |
+
output_attentions (`bool`, *optional*):
|
1025 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1026 |
+
returned tensors for more detail.
|
1027 |
+
use_cache (`bool`, *optional*):
|
1028 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1029 |
+
(see `past_key_values`).
|
1030 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1031 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1032 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1033 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
1034 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
1035 |
+
with `head_dim` being the embedding dimension of each attention head.
|
1036 |
+
kwargs (`dict`, *optional*):
|
1037 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
1038 |
+
into the model
|
1039 |
+
"""
|
1040 |
+
|
1041 |
+
residual = hidden_states
|
1042 |
+
hidden_states = self.attn_norm(hidden_states)
|
1043 |
+
|
1044 |
+
# Self Attention
|
1045 |
+
hidden_states, self_attn_weights = self.self_attn(
|
1046 |
+
hidden_states=hidden_states,
|
1047 |
+
attention_mask=attention_mask,
|
1048 |
+
position_ids=position_ids,
|
1049 |
+
past_key_value=past_key_value,
|
1050 |
+
output_attentions=output_attentions,
|
1051 |
+
use_cache=use_cache,
|
1052 |
+
cache_position=cache_position,
|
1053 |
+
position_embeddings=position_embeddings,
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
hidden_states = residual + self.dropout(hidden_states)
|
1057 |
+
|
1058 |
+
# Fully Connected
|
1059 |
+
residual = hidden_states
|
1060 |
+
hidden_states = self.ff_norm(hidden_states)
|
1061 |
+
hidden_states = self.mlp(hidden_states)
|
1062 |
+
|
1063 |
+
hidden_states = residual + self.dropout(hidden_states)
|
1064 |
+
|
1065 |
+
outputs = (hidden_states,)
|
1066 |
+
|
1067 |
+
if output_attentions:
|
1068 |
+
outputs += (self_attn_weights,)
|
1069 |
+
|
1070 |
+
return outputs
|
1071 |
+
|
1072 |
+
|
1073 |
+
class MolmoActPostNormDecoderLayer(MolmoActDecoderLayer):
|
1074 |
+
def forward(
|
1075 |
+
self,
|
1076 |
+
hidden_states: torch.Tensor,
|
1077 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1078 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1079 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
1080 |
+
output_attentions: Optional[bool] = False,
|
1081 |
+
use_cache: Optional[bool] = False,
|
1082 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1083 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
1084 |
+
**kwargs,
|
1085 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1086 |
+
"""
|
1087 |
+
Args:
|
1088 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1089 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
1090 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1091 |
+
output_attentions (`bool`, *optional*):
|
1092 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1093 |
+
returned tensors for more detail.
|
1094 |
+
use_cache (`bool`, *optional*):
|
1095 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1096 |
+
(see `past_key_values`).
|
1097 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1098 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1099 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1100 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
1101 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
1102 |
+
with `head_dim` being the embedding dimension of each attention head.
|
1103 |
+
kwargs (`dict`, *optional*):
|
1104 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
1105 |
+
into the model
|
1106 |
+
"""
|
1107 |
+
|
1108 |
+
residual = hidden_states
|
1109 |
+
|
1110 |
+
# Self Attention
|
1111 |
+
hidden_states, self_attn_weights = self.self_attn(
|
1112 |
+
hidden_states=hidden_states,
|
1113 |
+
attention_mask=attention_mask,
|
1114 |
+
position_ids=position_ids,
|
1115 |
+
past_key_value=past_key_value,
|
1116 |
+
output_attentions=output_attentions,
|
1117 |
+
use_cache=use_cache,
|
1118 |
+
cache_position=cache_position,
|
1119 |
+
position_embeddings=position_embeddings,
|
1120 |
+
)
|
1121 |
+
hidden_states = self.attn_norm(hidden_states)
|
1122 |
+
|
1123 |
+
hidden_states = residual + self.dropout(hidden_states)
|
1124 |
+
|
1125 |
+
# Fully Connected
|
1126 |
+
residual = hidden_states
|
1127 |
+
hidden_states = self.mlp(hidden_states)
|
1128 |
+
hidden_states = self.ff_norm(hidden_states)
|
1129 |
+
|
1130 |
+
hidden_states = residual + self.dropout(hidden_states)
|
1131 |
+
|
1132 |
+
outputs = (hidden_states,)
|
1133 |
+
|
1134 |
+
if output_attentions:
|
1135 |
+
outputs += (self_attn_weights,)
|
1136 |
+
|
1137 |
+
return outputs
|
1138 |
+
|
1139 |
+
|
1140 |
+
class MolmoActEmbedding(nn.Module):
|
1141 |
+
def __init__(
|
1142 |
+
self,
|
1143 |
+
num_embeddings: int,
|
1144 |
+
num_new_embeddings: int,
|
1145 |
+
features: int,
|
1146 |
+
device: Union[str, torch.device] = None,
|
1147 |
+
):
|
1148 |
+
super().__init__()
|
1149 |
+
self.embedding = nn.Parameter(
|
1150 |
+
torch.zeros(num_embeddings, features, device=device),
|
1151 |
+
)
|
1152 |
+
self.new_embedding = nn.Parameter(
|
1153 |
+
torch.zeros(num_new_embeddings, features, device=device),
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1157 |
+
return F.embedding(x, torch.cat([self.embedding, self.new_embedding], dim=0))
|
1158 |
+
|
1159 |
+
|
1160 |
+
MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING = r"""
|
1161 |
+
Args:
|
1162 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1163 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1164 |
+
it.
|
1165 |
+
|
1166 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1167 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1168 |
+
|
1169 |
+
[What are input IDs?](../glossary#input-ids)
|
1170 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1171 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1172 |
+
|
1173 |
+
- 1 for tokens that are **not masked**,
|
1174 |
+
- 0 for tokens that are **masked**.
|
1175 |
+
|
1176 |
+
[What are attention masks?](../glossary#attention-mask)
|
1177 |
+
|
1178 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1179 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1180 |
+
|
1181 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1182 |
+
`past_key_values`).
|
1183 |
+
|
1184 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1185 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1186 |
+
information on the default strategy.
|
1187 |
+
|
1188 |
+
- 1 indicates the head is **not masked**,
|
1189 |
+
- 0 indicates the head is **masked**.
|
1190 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1191 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1192 |
+
config.n_positions - 1]`.
|
1193 |
+
|
1194 |
+
[What are position IDs?](../glossary#position-ids)
|
1195 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1196 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1197 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1198 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1199 |
+
|
1200 |
+
Two formats are allowed:
|
1201 |
+
- a [`~cache_utils.Cache`] instance, see our
|
1202 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
1203 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1204 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1205 |
+
cache format.
|
1206 |
+
|
1207 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1208 |
+
legacy cache format will be returned.
|
1209 |
+
|
1210 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1211 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1212 |
+
of shape `(batch_size, sequence_length)`.
|
1213 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1214 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1215 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1216 |
+
model's internal embedding lookup matrix.
|
1217 |
+
use_cache (`bool`, *optional*):
|
1218 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1219 |
+
`past_key_values`).
|
1220 |
+
output_attentions (`bool`, *optional*):
|
1221 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1222 |
+
tensors for more detail.
|
1223 |
+
output_hidden_states (`bool`, *optional*):
|
1224 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1225 |
+
more detail.
|
1226 |
+
return_dict (`bool`, *optional*):
|
1227 |
+
Whether or not to return a [`CausalLMOutputWithPast`] instead of a plain tuple.
|
1228 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1229 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1230 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1231 |
+
the complete sequence length.
|
1232 |
+
"""
|
1233 |
+
|
1234 |
+
|
1235 |
+
@add_start_docstrings(
|
1236 |
+
"The bare MolmoAct text-only model outputting raw hidden-states without any specific head on top.",
|
1237 |
+
MOLMO_START_DOCSTRING,
|
1238 |
+
)
|
1239 |
+
class MolmoActLlm(MolmoActPreTrainedModel):
|
1240 |
+
def __init__(self, config: MolmoActLlmConfig):
|
1241 |
+
super().__init__(config)
|
1242 |
+
self.config = config
|
1243 |
+
if config.additional_vocab_size is not None:
|
1244 |
+
self.wte = MolmoActEmbedding(
|
1245 |
+
config.vocab_size,
|
1246 |
+
config.additional_vocab_size,
|
1247 |
+
config.hidden_size,
|
1248 |
+
)
|
1249 |
+
else:
|
1250 |
+
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
1251 |
+
self.emb_drop = nn.Dropout(config.embedding_dropout)
|
1252 |
+
decoder_layer = MolmoActPostNormDecoderLayer if config.norm_after else MolmoActDecoderLayer
|
1253 |
+
self.blocks = nn.ModuleList(
|
1254 |
+
[decoder_layer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1255 |
+
)
|
1256 |
+
self.ln_f = MolmoActRMSNorm(config.hidden_size, eps=config.layer_norm_eps)
|
1257 |
+
self.rotary_emb = MolmoActRotaryEmbedding(config)
|
1258 |
+
self.gradient_checkpointing = False
|
1259 |
+
|
1260 |
+
# Initialize weights and apply final processing
|
1261 |
+
self.post_init()
|
1262 |
+
|
1263 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
1264 |
+
return self.wte
|
1265 |
+
|
1266 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
1267 |
+
self.wte = value
|
1268 |
+
|
1269 |
+
@can_return_tuple
|
1270 |
+
def forward(
|
1271 |
+
self,
|
1272 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1273 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1274 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1275 |
+
past_key_values: Optional[Cache] = None,
|
1276 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1277 |
+
use_cache: Optional[bool] = None,
|
1278 |
+
output_attentions: Optional[bool] = None,
|
1279 |
+
output_hidden_states: Optional[bool] = None,
|
1280 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1281 |
+
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
|
1282 |
+
) -> BaseModelOutputWithPast:
|
1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1284 |
+
output_hidden_states = (
|
1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1286 |
+
)
|
1287 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1288 |
+
|
1289 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1290 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1291 |
+
|
1292 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1293 |
+
logger.warning_once(
|
1294 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1295 |
+
)
|
1296 |
+
use_cache = False
|
1297 |
+
|
1298 |
+
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
|
1299 |
+
if not isinstance(past_key_values, (type(None), Cache)):
|
1300 |
+
raise ValueError("The `past_key_values` should be either a `Cache` object or `None`.")
|
1301 |
+
|
1302 |
+
if inputs_embeds is None:
|
1303 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
1304 |
+
inputs_embeds = self.wte(input_ids)
|
1305 |
+
|
1306 |
+
if use_cache and past_key_values is None:
|
1307 |
+
past_key_values = DynamicCache()
|
1308 |
+
|
1309 |
+
if cache_position is None:
|
1310 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1311 |
+
cache_position = torch.arange(
|
1312 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1313 |
+
)
|
1314 |
+
|
1315 |
+
if position_ids is None:
|
1316 |
+
position_ids = cache_position.unsqueeze(0)
|
1317 |
+
|
1318 |
+
causal_mask = self._update_causal_mask(
|
1319 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
hidden_states = inputs_embeds
|
1323 |
+
|
1324 |
+
# create position embeddings to be shared across the decoder layers
|
1325 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1326 |
+
|
1327 |
+
# decoder layers
|
1328 |
+
all_hidden_states = () if output_hidden_states else None
|
1329 |
+
all_self_attns = () if output_attentions else None
|
1330 |
+
|
1331 |
+
for decoder_block in self.blocks[: self.config.num_hidden_layers]:
|
1332 |
+
if output_hidden_states:
|
1333 |
+
all_hidden_states += (hidden_states,)
|
1334 |
+
|
1335 |
+
layer_outputs = decoder_block(
|
1336 |
+
hidden_states,
|
1337 |
+
attention_mask=causal_mask,
|
1338 |
+
position_ids=position_ids,
|
1339 |
+
past_key_value=past_key_values,
|
1340 |
+
output_attentions=output_attentions,
|
1341 |
+
use_cache=use_cache,
|
1342 |
+
cache_position=cache_position,
|
1343 |
+
position_embeddings=position_embeddings,
|
1344 |
+
**flash_attn_kwargs,
|
1345 |
+
)
|
1346 |
+
|
1347 |
+
hidden_states = layer_outputs[0]
|
1348 |
+
|
1349 |
+
if output_attentions:
|
1350 |
+
all_self_attns += (layer_outputs[1],)
|
1351 |
+
|
1352 |
+
hidden_states = self.ln_f(hidden_states)
|
1353 |
+
|
1354 |
+
# add hidden states from the last decoder layer
|
1355 |
+
if output_hidden_states:
|
1356 |
+
all_hidden_states += (hidden_states,)
|
1357 |
+
|
1358 |
+
return BaseModelOutputWithPast(
|
1359 |
+
last_hidden_state=hidden_states,
|
1360 |
+
past_key_values=past_key_values if use_cache else None,
|
1361 |
+
hidden_states=all_hidden_states,
|
1362 |
+
attentions=all_self_attns,
|
1363 |
+
)
|
1364 |
+
|
1365 |
+
def _update_causal_mask(
|
1366 |
+
self,
|
1367 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
1368 |
+
input_tensor: torch.Tensor,
|
1369 |
+
cache_position: torch.Tensor,
|
1370 |
+
past_key_values: Cache,
|
1371 |
+
output_attentions: bool = False,
|
1372 |
+
):
|
1373 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1374 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
1375 |
+
return attention_mask
|
1376 |
+
return None
|
1377 |
+
if self.config._attn_implementation == "flex_attention":
|
1378 |
+
if isinstance(attention_mask, torch.Tensor):
|
1379 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
1380 |
+
return attention_mask
|
1381 |
+
|
1382 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1383 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
1384 |
+
# to infer the attention mask.
|
1385 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1386 |
+
using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False
|
1387 |
+
|
1388 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
1389 |
+
if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions:
|
1390 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
1391 |
+
attention_mask,
|
1392 |
+
inputs_embeds=input_tensor,
|
1393 |
+
past_key_values_length=past_seen_tokens,
|
1394 |
+
is_training=self.training,
|
1395 |
+
):
|
1396 |
+
return None
|
1397 |
+
|
1398 |
+
dtype = input_tensor.dtype
|
1399 |
+
sequence_length = input_tensor.shape[1]
|
1400 |
+
if using_compilable_cache:
|
1401 |
+
target_length = past_key_values.get_max_cache_shape()
|
1402 |
+
else:
|
1403 |
+
target_length = (
|
1404 |
+
attention_mask.shape[-1]
|
1405 |
+
if isinstance(attention_mask, torch.Tensor)
|
1406 |
+
else past_seen_tokens + sequence_length + 1
|
1407 |
+
)
|
1408 |
+
|
1409 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
1410 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
1411 |
+
attention_mask,
|
1412 |
+
sequence_length=sequence_length,
|
1413 |
+
target_length=target_length,
|
1414 |
+
dtype=dtype,
|
1415 |
+
cache_position=cache_position,
|
1416 |
+
batch_size=input_tensor.shape[0],
|
1417 |
+
)
|
1418 |
+
|
1419 |
+
if (
|
1420 |
+
self.config._attn_implementation == "sdpa"
|
1421 |
+
and attention_mask is not None
|
1422 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
1423 |
+
and not output_attentions
|
1424 |
+
):
|
1425 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
1426 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1427 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1428 |
+
min_dtype = torch.finfo(dtype).min
|
1429 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
1430 |
+
|
1431 |
+
return causal_mask
|
1432 |
+
|
1433 |
+
@staticmethod
|
1434 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
1435 |
+
attention_mask: torch.Tensor,
|
1436 |
+
sequence_length: int,
|
1437 |
+
target_length: int,
|
1438 |
+
dtype: torch.dtype,
|
1439 |
+
cache_position: torch.Tensor,
|
1440 |
+
batch_size: int,
|
1441 |
+
**kwargs,
|
1442 |
+
):
|
1443 |
+
"""
|
1444 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
1445 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
1446 |
+
|
1447 |
+
Args:
|
1448 |
+
attention_mask (`torch.Tensor`):
|
1449 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
1450 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
1451 |
+
sequence_length (`int`):
|
1452 |
+
The sequence length being processed.
|
1453 |
+
target_length (`int`):
|
1454 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
1455 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
1456 |
+
dtype (`torch.dtype`):
|
1457 |
+
The dtype to use for the 4D attention mask.
|
1458 |
+
cache_position (`torch.Tensor`):
|
1459 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1460 |
+
batch_size (`torch.Tensor`):
|
1461 |
+
Batch size.
|
1462 |
+
"""
|
1463 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
1464 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
1465 |
+
causal_mask = attention_mask
|
1466 |
+
else:
|
1467 |
+
min_dtype = torch.finfo(dtype).min
|
1468 |
+
causal_mask = torch.full(
|
1469 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
1470 |
+
)
|
1471 |
+
if sequence_length != 1:
|
1472 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
1473 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
1474 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
1475 |
+
if attention_mask is not None:
|
1476 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
1477 |
+
mask_length = attention_mask.shape[-1]
|
1478 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
1479 |
+
causal_mask.device
|
1480 |
+
)
|
1481 |
+
padding_mask = padding_mask == 0
|
1482 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
1483 |
+
padding_mask, min_dtype
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
return causal_mask
|
1487 |
+
|
1488 |
+
|
1489 |
+
@add_start_docstrings(
|
1490 |
+
"The MolmoAct text-only model which consists of a language model + lm head.",
|
1491 |
+
MOLMO_START_DOCSTRING,
|
1492 |
+
)
|
1493 |
+
class MolmoActForCausalLM(MolmoActPreTrainedModel, GenerationMixin):
|
1494 |
+
_tied_weights_keys = [] # Weights are not tied
|
1495 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
1496 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
1497 |
+
base_model_prefix = "model"
|
1498 |
+
|
1499 |
+
def __init__(self, config: MolmoActLlmConfig):
|
1500 |
+
super().__init__(config)
|
1501 |
+
self.model = MolmoActLlm(config)
|
1502 |
+
self.vocab_size = config.vocab_size
|
1503 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1504 |
+
|
1505 |
+
# Initialize weights and apply final processing
|
1506 |
+
self.post_init()
|
1507 |
+
|
1508 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
1509 |
+
return self.model.wte
|
1510 |
+
|
1511 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
1512 |
+
self.model.wte = value
|
1513 |
+
|
1514 |
+
def get_output_embeddings(self):
|
1515 |
+
return self.lm_head
|
1516 |
+
|
1517 |
+
def set_output_embeddings(self, value: torch.nn.Module) -> None:
|
1518 |
+
self.lm_head = value
|
1519 |
+
|
1520 |
+
def set_decoder(self, decoder: torch.nn.Module) -> None:
|
1521 |
+
self.model = decoder
|
1522 |
+
|
1523 |
+
def get_decoder(self) -> torch.nn.Module:
|
1524 |
+
return self.model
|
1525 |
+
|
1526 |
+
@can_return_tuple
|
1527 |
+
@add_start_docstrings_to_model_forward(MOLMO2_TEXT_ONLY_INPUTS_DOCSTRING)
|
1528 |
+
def forward(
|
1529 |
+
self,
|
1530 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1531 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1532 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1533 |
+
past_key_values: Optional[Cache] = None,
|
1534 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1535 |
+
labels: Optional[torch.LongTensor] = None,
|
1536 |
+
use_cache: Optional[bool] = None,
|
1537 |
+
output_attentions: Optional[bool] = None,
|
1538 |
+
output_hidden_states: Optional[bool] = None,
|
1539 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1540 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
1541 |
+
**kwargs,
|
1542 |
+
) -> CausalLMOutputWithPast:
|
1543 |
+
r"""
|
1544 |
+
```python
|
1545 |
+
>>> from transformers import AutoTokenizer, MolmoActForCausalLM
|
1546 |
+
|
1547 |
+
>>> model = MolmoActForCausalLM.from_pretrained("...")
|
1548 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("...")
|
1549 |
+
|
1550 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1551 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1552 |
+
|
1553 |
+
>>> # Generate
|
1554 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1555 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1556 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1557 |
+
```"""
|
1558 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1559 |
+
output_hidden_states = (
|
1560 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1561 |
+
)
|
1562 |
+
|
1563 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1564 |
+
outputs: BaseModelOutputWithPast = self.model(
|
1565 |
+
input_ids=input_ids,
|
1566 |
+
attention_mask=attention_mask,
|
1567 |
+
position_ids=position_ids,
|
1568 |
+
past_key_values=past_key_values,
|
1569 |
+
inputs_embeds=inputs_embeds,
|
1570 |
+
use_cache=use_cache,
|
1571 |
+
output_attentions=output_attentions,
|
1572 |
+
output_hidden_states=output_hidden_states,
|
1573 |
+
cache_position=cache_position,
|
1574 |
+
**kwargs,
|
1575 |
+
)
|
1576 |
+
|
1577 |
+
hidden_states = outputs.last_hidden_state
|
1578 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
1579 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
1580 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
1581 |
+
|
1582 |
+
loss = None
|
1583 |
+
if labels is not None:
|
1584 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
1585 |
+
|
1586 |
+
return CausalLMOutputWithPast(
|
1587 |
+
loss=loss,
|
1588 |
+
logits=logits,
|
1589 |
+
past_key_values=outputs.past_key_values,
|
1590 |
+
hidden_states=outputs.hidden_states,
|
1591 |
+
attentions=outputs.attentions,
|
1592 |
+
)
|
1593 |
+
|
1594 |
+
|
1595 |
+
MOLMO2_INPUTS_DOCSTRING = r"""
|
1596 |
+
Args:
|
1597 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1598 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1599 |
+
it.
|
1600 |
+
|
1601 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1602 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1603 |
+
|
1604 |
+
[What are input IDs?](../glossary#input-ids)
|
1605 |
+
images (`torch.FloatTensor` of shape `(batch_size, n_crops, 27*27, 3*14*14)`, *optional*):
|
1606 |
+
The input crops in with pixel values between 0 and 1 and normalized with SigLIP2 mean/std
|
1607 |
+
|
1608 |
+
Each crop contains 27x27 patches with 14*14*3 pixel values
|
1609 |
+
image_masks (`torch.FloatTensor` of shape `(batch_size, n_crops, n_patches, n_features)`, *optional*):
|
1610 |
+
Image masks showing what percent of each patch is paddding
|
1611 |
+
pooled_patches_idx (`torch.LongTensor` of shape `(batch_size, n_image_tokens, n_pooled_patches)`):
|
1612 |
+
For each patch_id tokens in `input_ids`, the indices of the patches in `images`
|
1613 |
+
to pool for that token, masked with -1
|
1614 |
+
means ignore the patch.
|
1615 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1616 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1617 |
+
|
1618 |
+
- 1 for tokens that are **not masked**,
|
1619 |
+
- 0 for tokens that are **masked**.
|
1620 |
+
|
1621 |
+
[What are attention masks?](../glossary#attention-mask)
|
1622 |
+
|
1623 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1624 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1625 |
+
|
1626 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
1627 |
+
`past_key_values`).
|
1628 |
+
|
1629 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1630 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1631 |
+
information on the default strategy.
|
1632 |
+
|
1633 |
+
- 1 indicates the head is **not masked**,
|
1634 |
+
- 0 indicates the head is **masked**.
|
1635 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1636 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1637 |
+
config.n_positions - 1]`.
|
1638 |
+
|
1639 |
+
[What are position IDs?](../glossary#position-ids)
|
1640 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
1641 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1642 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
1643 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
1644 |
+
|
1645 |
+
Two formats are allowed:
|
1646 |
+
- a [`~cache_utils.Cache`] instance, see our
|
1647 |
+
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
1648 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1649 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
1650 |
+
cache format.
|
1651 |
+
|
1652 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
1653 |
+
legacy cache format will be returned.
|
1654 |
+
|
1655 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
1656 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
1657 |
+
of shape `(batch_size, sequence_length)`.
|
1658 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1659 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1660 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1661 |
+
model's internal embedding lookup matrix.
|
1662 |
+
use_cache (`bool`, *optional*):
|
1663 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1664 |
+
`past_key_values`).
|
1665 |
+
output_attentions (`bool`, *optional*):
|
1666 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1667 |
+
tensors for more detail.
|
1668 |
+
output_hidden_states (`bool`, *optional*):
|
1669 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1670 |
+
more detail.
|
1671 |
+
return_dict (`bool`, *optional*):
|
1672 |
+
Whether or not to return a [`MolmoActCausalLMOutputWithPast`] instead of a plain tuple.
|
1673 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1674 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
1675 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
1676 |
+
the complete sequence length.
|
1677 |
+
"""
|
1678 |
+
|
1679 |
+
|
1680 |
+
@add_start_docstrings(
|
1681 |
+
"The bare MolmoAct model outputting raw hidden-states without any specific head on top.",
|
1682 |
+
MOLMO_START_DOCSTRING,
|
1683 |
+
)
|
1684 |
+
class MolmoActModel(MolmoActPreTrainedModel):
|
1685 |
+
_checkpoint_conversion_mapping = {}
|
1686 |
+
|
1687 |
+
def __init__(self, config: MolmoActConfig):
|
1688 |
+
super().__init__(config)
|
1689 |
+
self.transformer: MolmoActLlm = MolmoActLlm(config.llm_config)
|
1690 |
+
self.vision_backbone: Optional[MolmoActVisionBackbone] = None
|
1691 |
+
if config.vit_config is not None and config.adapter_config is not None:
|
1692 |
+
self.vision_backbone = MolmoActVisionBackbone(config.vit_config, config.adapter_config)
|
1693 |
+
|
1694 |
+
# Initialize weights and apply final processing
|
1695 |
+
self.post_init()
|
1696 |
+
|
1697 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
1698 |
+
return self.transformer.wte
|
1699 |
+
|
1700 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
1701 |
+
self.transformer.wte = value
|
1702 |
+
|
1703 |
+
@property
|
1704 |
+
def device(self) -> torch.device:
|
1705 |
+
return self.transformer.ln_f.weight.device
|
1706 |
+
|
1707 |
+
def build_input_embeddings(
|
1708 |
+
self,
|
1709 |
+
input_ids: torch.LongTensor,
|
1710 |
+
images: Optional[torch.FloatTensor] = None, # image inputs
|
1711 |
+
image_masks: Optional[torch.Tensor] = None,
|
1712 |
+
pooled_patches_idx: Optional[torch.LongTensor] = None,
|
1713 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
1714 |
+
|
1715 |
+
# Get embeddings of input.
|
1716 |
+
# shape: (batch_size, seq_len, d_model)
|
1717 |
+
input_ids = input_ids * (input_ids != -1).to(input_ids.dtype)
|
1718 |
+
x = self.transformer.wte(input_ids)
|
1719 |
+
|
1720 |
+
image_features: Optional[torch.FloatTensor] = None
|
1721 |
+
if images is not None:
|
1722 |
+
image_features = self.vision_backbone(images, pooled_patches_idx)
|
1723 |
+
is_image_patch = input_ids.view(-1) == self.config.image_patch_id
|
1724 |
+
assert is_image_patch.sum() == len(image_features)
|
1725 |
+
x.view(-1, x.shape[-1])[is_image_patch] += image_features
|
1726 |
+
|
1727 |
+
# shape: (batch_size, seq_len, d_model)
|
1728 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1729 |
+
|
1730 |
+
return x, image_features
|
1731 |
+
|
1732 |
+
@can_return_tuple
|
1733 |
+
def forward(
|
1734 |
+
self,
|
1735 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1736 |
+
images: Optional[torch.FloatTensor] = None,
|
1737 |
+
image_masks: Optional[torch.Tensor] = None,
|
1738 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
1739 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1740 |
+
position_ids: Optional[torch.Tensor] = None,
|
1741 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1742 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1743 |
+
use_cache: Optional[bool] = None,
|
1744 |
+
output_attentions: Optional[bool] = None,
|
1745 |
+
output_hidden_states: Optional[bool] = None,
|
1746 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1747 |
+
) -> Union[Tuple, MolmoActModelOutputWithPast]:
|
1748 |
+
|
1749 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1750 |
+
output_hidden_states = (
|
1751 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1752 |
+
)
|
1753 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1754 |
+
|
1755 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1756 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
1757 |
+
|
1758 |
+
if images is not None and inputs_embeds is not None:
|
1759 |
+
raise ValueError(
|
1760 |
+
"You cannot specify both images and inputs_embeds at the same time."
|
1761 |
+
)
|
1762 |
+
|
1763 |
+
if inputs_embeds is None:
|
1764 |
+
inputs_embeds, image_features = self.build_input_embeddings(
|
1765 |
+
input_ids, images, image_masks, pooled_patches_idx)
|
1766 |
+
|
1767 |
+
outputs = self.transformer(
|
1768 |
+
attention_mask=attention_mask,
|
1769 |
+
position_ids=position_ids,
|
1770 |
+
past_key_values=past_key_values,
|
1771 |
+
inputs_embeds=inputs_embeds,
|
1772 |
+
use_cache=use_cache,
|
1773 |
+
output_attentions=output_attentions,
|
1774 |
+
output_hidden_states=output_hidden_states,
|
1775 |
+
cache_position=cache_position,
|
1776 |
+
)
|
1777 |
+
|
1778 |
+
return MolmoActModelOutputWithPast(
|
1779 |
+
last_hidden_state=outputs.last_hidden_state,
|
1780 |
+
past_key_values=outputs.past_key_values,
|
1781 |
+
hidden_states=outputs.hidden_states,
|
1782 |
+
attentions=outputs.attentions,
|
1783 |
+
image_hidden_states=image_features if images is not None else None,
|
1784 |
+
)
|
1785 |
+
|
1786 |
+
@add_start_docstrings(
|
1787 |
+
"The MolmoAct model which consists of a vision backbone and a language model + lm head.",
|
1788 |
+
MOLMO_START_DOCSTRING,
|
1789 |
+
)
|
1790 |
+
class MolmoActForActionReasoning(MolmoActPreTrainedModel, GenerationMixin):
|
1791 |
+
_checkpoint_conversion_mapping = {}
|
1792 |
+
_tied_weights_keys = [] # Weights are not tied
|
1793 |
+
config_class = MolmoActConfig
|
1794 |
+
|
1795 |
+
def __init__(self, config: MolmoActConfig):
|
1796 |
+
super().__init__(config)
|
1797 |
+
|
1798 |
+
self.model = MolmoActModel(config)
|
1799 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1800 |
+
self.vocab_size = config.vocab_size
|
1801 |
+
|
1802 |
+
# Initialize weights and apply final processing
|
1803 |
+
self.post_init()
|
1804 |
+
|
1805 |
+
# --- Action parsing / de-tokenization setup ---
|
1806 |
+
# Stats dict expected under config.norm_stats (per-dataset key). If missing, default to empty.
|
1807 |
+
self.norm_stats = getattr(config, "norm_stats", None) or {}
|
1808 |
+
# Number of discretization bins used for action tokens, defaults to 256.
|
1809 |
+
self.n_action_bins = getattr(config, "n_action_bins", 256)
|
1810 |
+
# Precompute bin centers in [-1, 1] for inverse token to value mapping.
|
1811 |
+
self.bins = np.linspace(-1.0, 1.0, self.n_action_bins)
|
1812 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
1813 |
+
# Lazily constructed tokenizer for converting token strings to ids
|
1814 |
+
self._qwen_tokenizer = None
|
1815 |
+
|
1816 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
1817 |
+
return self.model.transformer.wte
|
1818 |
+
|
1819 |
+
def set_input_embeddings(self, value: torch.nn.Module) -> None:
|
1820 |
+
self.model.transformer.wte = value
|
1821 |
+
|
1822 |
+
def get_output_embeddings(self):
|
1823 |
+
self.lm_head
|
1824 |
+
|
1825 |
+
def set_output_embeddings(self, value: torch.nn.Module) -> None:
|
1826 |
+
self.lm_head = value
|
1827 |
+
|
1828 |
+
# Make modules available throught conditional class for BC
|
1829 |
+
@property
|
1830 |
+
def language_model(self) -> torch.nn.Module:
|
1831 |
+
return self.model.transformer
|
1832 |
+
|
1833 |
+
@property
|
1834 |
+
def vision_backbone(self) -> torch.nn.Module:
|
1835 |
+
return self.model.vision_backbone
|
1836 |
+
|
1837 |
+
@can_return_tuple
|
1838 |
+
@add_start_docstrings_to_model_forward(MOLMO2_INPUTS_DOCSTRING)
|
1839 |
+
def forward(
|
1840 |
+
self,
|
1841 |
+
input_ids: torch.LongTensor = None,
|
1842 |
+
images: Optional[torch.Tensor] = None,
|
1843 |
+
image_masks: Optional[torch.Tensor] = None,
|
1844 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
1845 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1846 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1847 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1848 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1849 |
+
labels: Optional[torch.LongTensor] = None,
|
1850 |
+
use_cache: Optional[bool] = None,
|
1851 |
+
output_attentions: Optional[bool] = None,
|
1852 |
+
output_hidden_states: Optional[bool] = None,
|
1853 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1854 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
1855 |
+
**kwargs,
|
1856 |
+
) -> Union[Tuple, MolmoActCausalLMOutputWithPast]:
|
1857 |
+
r"""
|
1858 |
+
```python
|
1859 |
+
>>> from PIL import Image
|
1860 |
+
>>> import requests
|
1861 |
+
>>> from transformers import AutoProcessor, MolmoActForActionReasoning
|
1862 |
+
|
1863 |
+
>>> model = MolmoActForActionReasoning.from_pretrained("...")
|
1864 |
+
>>> processor = AutoProcessor.from_pretrained("...")
|
1865 |
+
|
1866 |
+
>>> prompt = "What's the content of the image?"
|
1867 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1868 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1869 |
+
|
1870 |
+
>>> inputs = processor(images=image, text=prompt, apply_chat_template=True, return_tensors="pt")
|
1871 |
+
|
1872 |
+
>>> # Generate
|
1873 |
+
>>> generated_ids = model.generate(**inputs, max_new_tokens=15)
|
1874 |
+
>>> generated_tokens = generated_ids[:, inputs['input_ids'].size(1):]
|
1875 |
+
>>> processor.batch_decode(generated_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1876 |
+
"The image features a busy city street with a stop sign prominently displayed"
|
1877 |
+
```"""
|
1878 |
+
outputs = self.model(
|
1879 |
+
input_ids=input_ids,
|
1880 |
+
images=images,
|
1881 |
+
image_masks=image_masks,
|
1882 |
+
pooled_patches_idx=pooled_patches_idx,
|
1883 |
+
attention_mask=attention_mask,
|
1884 |
+
position_ids=position_ids,
|
1885 |
+
past_key_values=past_key_values,
|
1886 |
+
inputs_embeds=inputs_embeds,
|
1887 |
+
use_cache=use_cache,
|
1888 |
+
output_attentions=output_attentions,
|
1889 |
+
output_hidden_states=output_hidden_states,
|
1890 |
+
cache_position=cache_position,
|
1891 |
+
)
|
1892 |
+
|
1893 |
+
hidden_states = outputs.last_hidden_state
|
1894 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
1895 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
1896 |
+
|
1897 |
+
loss = None
|
1898 |
+
if labels is not None:
|
1899 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size)
|
1900 |
+
|
1901 |
+
return MolmoActCausalLMOutputWithPast(
|
1902 |
+
loss=loss,
|
1903 |
+
logits=logits,
|
1904 |
+
past_key_values=outputs.past_key_values,
|
1905 |
+
hidden_states=outputs.hidden_states,
|
1906 |
+
attentions=outputs.attentions,
|
1907 |
+
image_hidden_states=outputs.image_hidden_states,
|
1908 |
+
)
|
1909 |
+
|
1910 |
+
# ===== Utilities for action parsing / un-normalization =====
|
1911 |
+
def _check_unnorm_key(self, unnorm_key: Optional[str]) -> str:
|
1912 |
+
"""Validate and resolve which dataset key to use from self.norm_stats."""
|
1913 |
+
if not self.norm_stats:
|
1914 |
+
raise ValueError("No norm_stats found in config; cannot unnormalize actions.")
|
1915 |
+
if unnorm_key is None:
|
1916 |
+
if len(self.norm_stats) != 1:
|
1917 |
+
raise ValueError(
|
1918 |
+
f"Model has multiple dataset stats; please pass `unnorm_key` from {list(self.norm_stats.keys())}"
|
1919 |
+
)
|
1920 |
+
return next(iter(self.norm_stats.keys()))
|
1921 |
+
if unnorm_key not in self.norm_stats:
|
1922 |
+
raise ValueError(f"`unnorm_key`={unnorm_key!r} not in {list(self.norm_stats.keys())}")
|
1923 |
+
return unnorm_key
|
1924 |
+
|
1925 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
1926 |
+
"""Return action dimensionality from q01 stats length for the dataset key."""
|
1927 |
+
key = self._check_unnorm_key(unnorm_key)
|
1928 |
+
return len(self.norm_stats[key]["action"]["q01"])
|
1929 |
+
|
1930 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
1931 |
+
"""Return the full action stats dict for a given dataset key."""
|
1932 |
+
key = self._check_unnorm_key(unnorm_key)
|
1933 |
+
return self.norm_stats[key]["action"]
|
1934 |
+
|
1935 |
+
@torch.no_grad()
|
1936 |
+
def parse_action(self, text: str, unnorm_key: Optional[str] = None) -> list:
|
1937 |
+
"""
|
1938 |
+
Parse a generated text to extract one 1×D action token list, decode to continuous values,
|
1939 |
+
and unnormalize using dataset-specific stats from `config.norm_stats`.
|
1940 |
+
|
1941 |
+
This follows the pipeline used in `experiments/robot/libero/main_libero_10_evaluation.py`:
|
1942 |
+
- Find bracketed token lists following the phrase "the action that the robot should take is" (case-insensitive),
|
1943 |
+
falling back to any bracketed list in the text.
|
1944 |
+
- Convert token strings → ids via Qwen2Tokenizer.
|
1945 |
+
- Map ids → discretized bin indices using: `discretized = vocab_size - token_id - 1` (clipped to bins)
|
1946 |
+
- Convert bins → normalized actions in [-1, 1] using precomputed `bin_centers`.
|
1947 |
+
- Unnormalize with q01/q99 and optional `mask` from norm_stats.
|
1948 |
+
|
1949 |
+
Returns:
|
1950 |
+
List[float]: unnormalized action vector of length D.
|
1951 |
+
"""
|
1952 |
+
# Resolve action dimension and stats
|
1953 |
+
action_dim = self.get_action_dim(unnorm_key)
|
1954 |
+
stats = self.get_action_stats(unnorm_key)
|
1955 |
+
q01 = np.asarray(stats["q01"], dtype=np.float32)
|
1956 |
+
q99 = np.asarray(stats["q99"], dtype=np.float32)
|
1957 |
+
mask = np.asarray(stats.get("mask", np.ones_like(q01, dtype=bool)), dtype=bool)
|
1958 |
+
|
1959 |
+
# Lazily load the tokenizer (shared across calls)
|
1960 |
+
if self._qwen_tokenizer is None:
|
1961 |
+
self._qwen_tokenizer = Qwen2Tokenizer.from_pretrained("Qwen/Qwen2-7B")
|
1962 |
+
|
1963 |
+
token_lists = extract_action_token_lists(text, only_len=action_dim)
|
1964 |
+
action_lists = []
|
1965 |
+
|
1966 |
+
# Choose the first list (temporal aggregation, if any, should be done by the caller)
|
1967 |
+
for tokens in token_lists:
|
1968 |
+
|
1969 |
+
# Convert tokens → ids (replace None with vocab_size to avoid negatives)
|
1970 |
+
ids = self._qwen_tokenizer.convert_tokens_to_ids(tokens)
|
1971 |
+
ids = [self._qwen_tokenizer.vocab_size if i is None else int(i) for i in ids]
|
1972 |
+
ids = np.asarray(ids, dtype=np.int64)
|
1973 |
+
|
1974 |
+
# ids → discretized bin indices → normalized actions in [-1, 1]
|
1975 |
+
discretized = self._qwen_tokenizer.vocab_size - ids
|
1976 |
+
discretized = np.clip(discretized - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
1977 |
+
normalized = self.bin_centers[discretized]
|
1978 |
+
|
1979 |
+
# Unnormalize using per-dimension statistics
|
1980 |
+
unnorm = 0.5 * (normalized + 1.0) * (q99 - q01) + q01
|
1981 |
+
actions = np.where(mask, unnorm, normalized)
|
1982 |
+
|
1983 |
+
action_lists.append([float(x) for x in actions])
|
1984 |
+
|
1985 |
+
# Return a Python list of float actions
|
1986 |
+
return action_lists
|
1987 |
+
|
1988 |
+
@torch.no_grad()
|
1989 |
+
def parse_trace(self, text: str) -> list:
|
1990 |
+
return extract_trace_lists(text, point_len=2, min_points=1)
|
1991 |
+
|
1992 |
+
@torch.no_grad()
|
1993 |
+
def parse_depth(self, text: str) -> list:
|
1994 |
+
return extract_depth_string(text, include_tags=True)
|
1995 |
+
|
1996 |
+
|
1997 |
+
def prepare_inputs_for_generation(
|
1998 |
+
self,
|
1999 |
+
input_ids: torch.LongTensor,
|
2000 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2001 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2002 |
+
images: Optional[torch.FloatTensor] = None,
|
2003 |
+
image_masks: Optional[torch.Tensor] = None,
|
2004 |
+
pooled_patches_idx: Optional[torch.Tensor] = None,
|
2005 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2006 |
+
cache_position: Optional[torch.LongTensor] = None,
|
2007 |
+
logits_to_keep: Optional[Union[int, torch.Tensor]] = None,
|
2008 |
+
**kwargs,
|
2009 |
+
):
|
2010 |
+
|
2011 |
+
model_inputs = super().prepare_inputs_for_generation(
|
2012 |
+
input_ids,
|
2013 |
+
past_key_values=past_key_values,
|
2014 |
+
inputs_embeds=inputs_embeds,
|
2015 |
+
attention_mask=attention_mask,
|
2016 |
+
cache_position=cache_position,
|
2017 |
+
logits_to_keep=logits_to_keep,
|
2018 |
+
**kwargs,
|
2019 |
+
)
|
2020 |
+
|
2021 |
+
if cache_position[0] == 0:
|
2022 |
+
model_inputs["images"] = images
|
2023 |
+
model_inputs["pooled_patches_idx"] = pooled_patches_idx
|
2024 |
+
model_inputs["image_masks"] = image_masks
|
2025 |
+
|
2026 |
+
return model_inputs
|
2027 |
+
|
2028 |
+
def _update_model_kwargs_for_generation(
|
2029 |
+
self,
|
2030 |
+
outputs: ModelOutput,
|
2031 |
+
model_kwargs: Dict[str, Any],
|
2032 |
+
is_encoder_decoder: bool = False,
|
2033 |
+
num_new_tokens: int = 1,
|
2034 |
+
) -> Dict[str, Any]:
|
2035 |
+
if model_kwargs["use_cache"] and "images" in model_kwargs:
|
2036 |
+
# After the first step, no long pass the images into forward since the images tokens
|
2037 |
+
# are already cached
|
2038 |
+
for k in ["images", "image_masks", "pooled_patches_idx"]:
|
2039 |
+
del model_kwargs[k]
|
2040 |
+
return super()._update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder, num_new_tokens)
|
2041 |
+
|
2042 |
+
@staticmethod
|
2043 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
2044 |
+
attention_mask: torch.Tensor,
|
2045 |
+
sequence_length: int,
|
2046 |
+
target_length: int,
|
2047 |
+
dtype: torch.dtype,
|
2048 |
+
cache_position: torch.Tensor,
|
2049 |
+
batch_size: int,
|
2050 |
+
**kwargs,
|
2051 |
+
):
|
2052 |
+
"""
|
2053 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
2054 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
2055 |
+
|
2056 |
+
Args:
|
2057 |
+
attention_mask (`torch.Tensor`):
|
2058 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
2059 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
2060 |
+
sequence_length (`int`):
|
2061 |
+
The sequence length being processed.
|
2062 |
+
target_length (`int`):
|
2063 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
2064 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
2065 |
+
dtype (`torch.dtype`):
|
2066 |
+
The dtype to use for the 4D attention mask.
|
2067 |
+
cache_position (`torch.Tensor`):
|
2068 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
2069 |
+
batch_size (`torch.Tensor`):
|
2070 |
+
Batch size.
|
2071 |
+
"""
|
2072 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
2073 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
2074 |
+
causal_mask = attention_mask
|
2075 |
+
else:
|
2076 |
+
min_dtype = torch.finfo(dtype).min
|
2077 |
+
causal_mask = torch.full(
|
2078 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
2079 |
+
)
|
2080 |
+
if sequence_length != 1:
|
2081 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
2082 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
2083 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
2084 |
+
if attention_mask is not None:
|
2085 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
2086 |
+
mask_length = attention_mask.shape[-1]
|
2087 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
2088 |
+
causal_mask.device
|
2089 |
+
)
|
2090 |
+
padding_mask = padding_mask == 0
|
2091 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
2092 |
+
padding_mask, min_dtype
|
2093 |
+
)
|
2094 |
+
|
2095 |
+
return causal_mask
|
2096 |
+
|
2097 |
+
|
2098 |
+
# Always register for multi-modal features
|
2099 |
+
AutoModelForImageTextToText.register(MolmoActConfig, MolmoActForActionReasoning)
|
2100 |
+
AutoModelForCausalLM.register(MolmoActLlmConfig, MolmoActForCausalLM)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_molmoact.MolmoActImageProcessor",
|
4 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
5 |
+
},
|
6 |
+
"base_image_input_size": [
|
7 |
+
378,
|
8 |
+
378
|
9 |
+
],
|
10 |
+
"crop_mode": "overlap-and-resize-c2",
|
11 |
+
"do_convert_rgb": true,
|
12 |
+
"do_pad": true,
|
13 |
+
"image_patch_size": 14,
|
14 |
+
"image_pooling_h": 2,
|
15 |
+
"image_pooling_w": 2,
|
16 |
+
"image_processor_type": "MolmoActImageProcessor",
|
17 |
+
"max_crops": 8,
|
18 |
+
"max_multi_image_crops": 8,
|
19 |
+
"normalize_mode": "siglip",
|
20 |
+
"overlap_margins": [
|
21 |
+
4,
|
22 |
+
4
|
23 |
+
],
|
24 |
+
"pad_value": 0.0,
|
25 |
+
"processor_class": "MolmoActProcessor",
|
26 |
+
"resize_mode": "siglip"
|
27 |
+
}
|
processing_molmoact.py
ADDED
@@ -0,0 +1,465 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Processor class for MolmoAct.
|
3 |
+
"""
|
4 |
+
from typing import List, Optional, Union, Dict, Tuple
|
5 |
+
|
6 |
+
import PIL
|
7 |
+
from PIL import ImageFile, ImageOps
|
8 |
+
|
9 |
+
try:
|
10 |
+
from typing import Unpack
|
11 |
+
except ImportError:
|
12 |
+
from typing_extensions import Unpack
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from transformers.image_utils import ImageInput
|
18 |
+
from transformers.processing_utils import (
|
19 |
+
ProcessingKwargs,
|
20 |
+
ProcessorMixin,
|
21 |
+
)
|
22 |
+
from transformers.feature_extraction_utils import BatchFeature
|
23 |
+
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
from transformers import AutoTokenizer
|
27 |
+
from .image_processing_molmoact import MolmoActImagesKwargs, MolmoActImageProcessor
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
# Special tokens, these should be present in any tokenizer we use since the preprocessor uses them
|
34 |
+
IMAGE_PATCH_TOKEN = f"<im_patch>" # Where to insert high-res tokens
|
35 |
+
IMAGE_LOW_RES_TOKEN = f"<im_low>" # Where to insert low-res tokens
|
36 |
+
IM_START_TOKEN = f"<im_start>"
|
37 |
+
IM_END_TOKEN = f"<im_end>"
|
38 |
+
IM_COL_TOKEN = f"<im_col>"
|
39 |
+
IMAGE_PROMPT = "<|image|>"
|
40 |
+
|
41 |
+
EXTRA_TOKENS = (IM_START_TOKEN, IM_END_TOKEN, IMAGE_PATCH_TOKEN,
|
42 |
+
IM_COL_TOKEN, IMAGE_PROMPT, IMAGE_LOW_RES_TOKEN)
|
43 |
+
|
44 |
+
|
45 |
+
DEMO_STYLES = [
|
46 |
+
"point_count",
|
47 |
+
"pointing",
|
48 |
+
"cosyn_point",
|
49 |
+
"user_qa",
|
50 |
+
"long_caption",
|
51 |
+
"short_caption",
|
52 |
+
"video_long_caption",
|
53 |
+
"video_short_caption",
|
54 |
+
"correction_qa",
|
55 |
+
"demo",
|
56 |
+
"android_control",
|
57 |
+
]
|
58 |
+
|
59 |
+
|
60 |
+
def setup_pil():
|
61 |
+
PIL.Image.MAX_IMAGE_PIXELS = None
|
62 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
63 |
+
|
64 |
+
|
65 |
+
def get_special_token_ids(tokenizer: AutoTokenizer) -> Dict[str, int]:
|
66 |
+
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
|
67 |
+
assert len(ids) == len(EXTRA_TOKENS)
|
68 |
+
return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
|
69 |
+
|
70 |
+
|
71 |
+
def load_image(image: Union[PIL.Image.Image, np.ndarray]) -> np.ndarray:
|
72 |
+
"""Load image"""
|
73 |
+
setup_pil()
|
74 |
+
if isinstance(image, PIL.Image.Image):
|
75 |
+
image = image.convert("RGB")
|
76 |
+
image = ImageOps.exif_transpose(image)
|
77 |
+
return np.array(image)
|
78 |
+
elif isinstance(image, np.ndarray):
|
79 |
+
assert len(image.shape) == 3, "Image should have 3 dimensions"
|
80 |
+
assert image.shape[2] == 3, "Image should have 3 channels"
|
81 |
+
assert image.dtype == np.uint8, "Image should have uint8 type"
|
82 |
+
return image
|
83 |
+
else:
|
84 |
+
raise ValueError("Image should be PIL.Image or np.ndarray")
|
85 |
+
|
86 |
+
|
87 |
+
class MolmoActProcessorKwargs(ProcessingKwargs, total=False):
|
88 |
+
"""MolmoAct processor kwargs"""
|
89 |
+
images_kwargs: MolmoActImagesKwargs
|
90 |
+
_defaults = {
|
91 |
+
"text_kwargs": {
|
92 |
+
"padding": False,
|
93 |
+
},
|
94 |
+
}
|
95 |
+
|
96 |
+
|
97 |
+
class MolmoActProcessor(ProcessorMixin):
|
98 |
+
attributes = ["image_processor", "tokenizer"]
|
99 |
+
optional_attributes = [
|
100 |
+
"chat_template",
|
101 |
+
"prompt_templates",
|
102 |
+
"message_format",
|
103 |
+
"system_prompt",
|
104 |
+
"style",
|
105 |
+
"always_start_with_space",
|
106 |
+
"default_inference_len",
|
107 |
+
"use_col_tokens",
|
108 |
+
"image_padding_mask",
|
109 |
+
]
|
110 |
+
image_processor_class = "AutoImageProcessor"
|
111 |
+
tokenizer_class = "AutoTokenizer"
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
image_processor: MolmoActImageProcessor = None,
|
116 |
+
tokenizer: AutoTokenizer = None,
|
117 |
+
chat_template: Optional[str] = None,
|
118 |
+
prompt_templates: Optional[str] = "uber_model",
|
119 |
+
message_format: Optional[str] = "role",
|
120 |
+
system_prompt: Optional[str] = "demo_or_style",
|
121 |
+
style: Optional[str] = "demo",
|
122 |
+
always_start_with_space: Optional[bool] = False,
|
123 |
+
default_inference_len: Optional[int] = 65,
|
124 |
+
use_col_tokens: Optional[bool] = True,
|
125 |
+
image_padding_mask: bool = False,
|
126 |
+
**kwargs
|
127 |
+
) -> None:
|
128 |
+
if tokenizer.padding_side != "left":
|
129 |
+
logger.warning(f"Tokenizer {tokenizer.name_or_path} is not left-padded, padding side will be set to left")
|
130 |
+
tokenizer.padding_side = "left" # type: ignore
|
131 |
+
super().__init__(
|
132 |
+
image_processor,
|
133 |
+
tokenizer,
|
134 |
+
chat_template=chat_template,
|
135 |
+
prompt_templates=prompt_templates,
|
136 |
+
message_format=message_format,
|
137 |
+
system_prompt=system_prompt,
|
138 |
+
style=style,
|
139 |
+
always_start_with_space=always_start_with_space,
|
140 |
+
default_inference_len=default_inference_len,
|
141 |
+
use_col_tokens=use_col_tokens,
|
142 |
+
image_padding_mask=image_padding_mask,
|
143 |
+
)
|
144 |
+
self._special_tokens = None
|
145 |
+
|
146 |
+
@property
|
147 |
+
def special_token_ids(self):
|
148 |
+
if self._special_tokens is None:
|
149 |
+
self._special_tokens = get_special_token_ids(self.tokenizer)
|
150 |
+
return self._special_tokens
|
151 |
+
|
152 |
+
def get_user_prompt(self, text: TextInput) -> str:
|
153 |
+
"""Get user prompt"""
|
154 |
+
if self.prompt_templates == "none":
|
155 |
+
return ""
|
156 |
+
elif self.prompt_templates == "uber_model":
|
157 |
+
return text
|
158 |
+
else:
|
159 |
+
raise NotImplementedError(self.prompt_templates)
|
160 |
+
|
161 |
+
def get_prefix(self) -> str:
|
162 |
+
"""Get prefix"""
|
163 |
+
if self.system_prompt == "style_and_length": # captioner
|
164 |
+
assert self.style in ["long_caption"]
|
165 |
+
style = self.style
|
166 |
+
n = None if self.default_inference_len is None else str(self.default_inference_len)
|
167 |
+
if n is not None and len(n) > 0: # allow empty string to signal unconditioned
|
168 |
+
prefix = style + " " + n + ":"
|
169 |
+
else:
|
170 |
+
prefix = style + " :"
|
171 |
+
elif self.system_prompt == "demo_or_style": # demo model
|
172 |
+
if self.style in DEMO_STYLES:
|
173 |
+
prefix = ""
|
174 |
+
else:
|
175 |
+
prefix = self.style + ":"
|
176 |
+
else:
|
177 |
+
raise NotImplementedError(self.system_prompt)
|
178 |
+
return prefix
|
179 |
+
|
180 |
+
def format_prompt(self, prompt: str) -> str:
|
181 |
+
"""Format prompt"""
|
182 |
+
if self.message_format == "none":
|
183 |
+
pass
|
184 |
+
elif self.message_format == "role":
|
185 |
+
prompt = "User: " + prompt + " Assistant:"
|
186 |
+
else:
|
187 |
+
raise NotImplementedError(self.message_format)
|
188 |
+
|
189 |
+
if self.always_start_with_space:
|
190 |
+
prompt = " " + prompt
|
191 |
+
|
192 |
+
return prompt
|
193 |
+
|
194 |
+
def get_prompt(self, text: TextInput) -> str:
|
195 |
+
prompt = self.get_user_prompt(text)
|
196 |
+
if self.system_prompt and self.system_prompt != "none":
|
197 |
+
prefix = self.get_prefix()
|
198 |
+
if len(prefix) > 0 and len(prompt) > 0:
|
199 |
+
prompt = prefix + " " + prompt
|
200 |
+
elif len(prefix) > 0:
|
201 |
+
prompt = prefix
|
202 |
+
prompt = self.format_prompt(prompt)
|
203 |
+
return prompt
|
204 |
+
|
205 |
+
def get_image_tokens(self, image_grid: np.ndarray):
|
206 |
+
joint = []
|
207 |
+
for h, w in image_grid:
|
208 |
+
per_row = np.full(w, IMAGE_PATCH_TOKEN)
|
209 |
+
if self.use_col_tokens:
|
210 |
+
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0)
|
211 |
+
extra_tokens = np.tile(per_row, [h])
|
212 |
+
joint += [
|
213 |
+
[IM_START_TOKEN],
|
214 |
+
extra_tokens,
|
215 |
+
[IM_END_TOKEN],
|
216 |
+
]
|
217 |
+
return np.concatenate(joint)
|
218 |
+
|
219 |
+
def insert_bos_numpy(
|
220 |
+
self,
|
221 |
+
input_ids: np.ndarray,
|
222 |
+
attention_mask: np.ndarray,
|
223 |
+
bos_token_id: int,
|
224 |
+
pad_token_id: int,
|
225 |
+
):
|
226 |
+
"""
|
227 |
+
Args:
|
228 |
+
input_ids: [B, S] array with left padding
|
229 |
+
attention_mask: [B, S] array (0 for pad, 1 for valid)
|
230 |
+
bos_token_id: int
|
231 |
+
pad_token_id: int
|
232 |
+
Returns:
|
233 |
+
input_ids_out: [B, S] or [B, S+1] array with bos inserted if needed
|
234 |
+
attention_mask_out: same shape as input_ids_out
|
235 |
+
"""
|
236 |
+
|
237 |
+
need_to_expand = len(input_ids.shape) == 1
|
238 |
+
if need_to_expand:
|
239 |
+
input_ids = input_ids[None, :]
|
240 |
+
attention_mask = attention_mask[None, :]
|
241 |
+
|
242 |
+
B, S = input_ids.shape
|
243 |
+
|
244 |
+
# Handle zero-length sequence
|
245 |
+
if S == 0:
|
246 |
+
new_input_ids = np.full((B, 1), bos_token_id, dtype=input_ids.dtype)
|
247 |
+
new_attention_mask = np.ones((B, 1), dtype=attention_mask.dtype)
|
248 |
+
if need_to_expand:
|
249 |
+
new_input_ids = new_input_ids[0]
|
250 |
+
new_attention_mask = new_attention_mask[0]
|
251 |
+
return new_input_ids, new_attention_mask
|
252 |
+
|
253 |
+
first_valid_index = (attention_mask == 1).argmax(axis=-1) # [B]
|
254 |
+
bos_already_present = np.all(input_ids[np.arange(B), first_valid_index] == bos_token_id)
|
255 |
+
|
256 |
+
if bos_already_present:
|
257 |
+
if need_to_expand:
|
258 |
+
input_ids = input_ids[0]
|
259 |
+
attention_mask = attention_mask[0]
|
260 |
+
return input_ids, attention_mask
|
261 |
+
else:
|
262 |
+
new_input_ids = np.full((B, S+1), pad_token_id, dtype=input_ids.dtype)
|
263 |
+
new_attention_mask = np.zeros((B, S+1), dtype=attention_mask.dtype)
|
264 |
+
|
265 |
+
src_idx = np.tile(np.arange(S), (B, 1)) # [B, S]
|
266 |
+
valid_mask = src_idx >= first_valid_index[:, None] # [B, S]
|
267 |
+
tgt_idx = src_idx + 1 # shit right
|
268 |
+
batch_idx = np.tile(np.arange(B)[:, None], (1, S)) # [B, S]
|
269 |
+
|
270 |
+
# flatten valid_positions
|
271 |
+
flat_vals = input_ids[valid_mask]
|
272 |
+
flat_batch = batch_idx[valid_mask]
|
273 |
+
flat_tgt = tgt_idx[valid_mask]
|
274 |
+
|
275 |
+
new_input_ids[flat_batch, flat_tgt] = flat_vals
|
276 |
+
new_attention_mask[flat_batch, flat_tgt] = 1
|
277 |
+
|
278 |
+
insert_pos = first_valid_index
|
279 |
+
new_input_ids[np.arange(B), insert_pos] = bos_token_id
|
280 |
+
new_attention_mask[np.arange(B), insert_pos] = 1
|
281 |
+
|
282 |
+
if need_to_expand:
|
283 |
+
new_input_ids = new_input_ids[0]
|
284 |
+
new_attention_mask = new_attention_mask[0]
|
285 |
+
|
286 |
+
return new_input_ids, new_attention_mask
|
287 |
+
|
288 |
+
def insert_bos_torch(
|
289 |
+
self,
|
290 |
+
input_ids: torch.Tensor,
|
291 |
+
attention_mask: torch.Tensor,
|
292 |
+
bos_token_id: int,
|
293 |
+
pad_token_id: int,
|
294 |
+
):
|
295 |
+
"""
|
296 |
+
Args:
|
297 |
+
input_ids: [B, S] tensor with left padding
|
298 |
+
attention_mask: [B, S] tensor (0 for pad, 1 for valid)
|
299 |
+
bos_token_id: int
|
300 |
+
pad_token_id: int
|
301 |
+
Returns:
|
302 |
+
input_ids_out: [B, S] or [B, S+1] tensor with bos inserted if needed
|
303 |
+
attention_mask_out: same shape as input_ids_out
|
304 |
+
"""
|
305 |
+
|
306 |
+
B, S = input_ids.shape
|
307 |
+
device = input_ids.device
|
308 |
+
|
309 |
+
# Handle zero-length sequence
|
310 |
+
if S == 0:
|
311 |
+
new_input_ids = torch.full((B, 1), bos_token_id, dtype=input_ids.dtype, device=device)
|
312 |
+
new_attention_mask = torch.ones((B, 1), dtype=attention_mask.dtype, device=device)
|
313 |
+
return new_input_ids, new_attention_mask
|
314 |
+
|
315 |
+
first_valid_index = (attention_mask == 1).long().argmax(dim=-1) # [B]
|
316 |
+
bos_already_present = (input_ids[torch.arange(B), first_valid_index] == bos_token_id).all()
|
317 |
+
|
318 |
+
if bos_already_present:
|
319 |
+
return input_ids, attention_mask
|
320 |
+
else:
|
321 |
+
new_input_ids = torch.full((B, S+1), pad_token_id, dtype=input_ids.dtype, device=device)
|
322 |
+
new_attention_mask = torch.zeros((B, S+1), dtype=attention_mask.dtype, device=device)
|
323 |
+
|
324 |
+
src_idx = torch.arange(S, device=device).expand(B, S) # [B, S]
|
325 |
+
valid_mask = src_idx >= first_valid_index.unsqueeze(1) # [B, S]
|
326 |
+
tgt_idx = src_idx + 1 # shift right
|
327 |
+
batch_idx = torch.arange(B, device=device).unsqueeze(1).expand_as(src_idx)
|
328 |
+
|
329 |
+
flat_vals = input_ids[valid_mask]
|
330 |
+
flat_batch = batch_idx[valid_mask]
|
331 |
+
flat_tgt = tgt_idx[valid_mask]
|
332 |
+
|
333 |
+
new_input_ids[flat_batch, flat_tgt] = flat_vals
|
334 |
+
new_attention_mask[flat_batch, flat_tgt] = 1
|
335 |
+
|
336 |
+
insert_pos = first_valid_index
|
337 |
+
batch_indices = torch.arange(B, device=device)
|
338 |
+
new_input_ids[batch_indices, insert_pos] = bos_token_id
|
339 |
+
new_attention_mask[batch_indices, insert_pos] = 1
|
340 |
+
|
341 |
+
return new_input_ids, new_attention_mask
|
342 |
+
|
343 |
+
def __call__(
|
344 |
+
self,
|
345 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
346 |
+
images: Union[ImageInput, List[ImageInput]] = None,
|
347 |
+
apply_chat_template: bool = False,
|
348 |
+
**kwargs: Unpack[MolmoActProcessorKwargs],
|
349 |
+
) -> BatchFeature:
|
350 |
+
if images is None and text is None:
|
351 |
+
raise ValueError("You have to specify at least one of `images` or `text`.")
|
352 |
+
|
353 |
+
output_kwargs = self._merge_kwargs(
|
354 |
+
MolmoActProcessorKwargs,
|
355 |
+
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
356 |
+
**kwargs,
|
357 |
+
)
|
358 |
+
|
359 |
+
if isinstance(text, (list, tuple)) and isinstance(images, (list, tuple)):
|
360 |
+
if len(text) != len(images):
|
361 |
+
raise ValueError("You have to provide the same number of text and images")
|
362 |
+
if len(text) > 1 and not output_kwargs["text_kwargs"].get("padding", False):
|
363 |
+
raise ValueError("You have to specify padding when you have multiple text inputs")
|
364 |
+
|
365 |
+
if isinstance(text, str):
|
366 |
+
text = [text]
|
367 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
368 |
+
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
369 |
+
|
370 |
+
if images is not None:
|
371 |
+
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
372 |
+
else:
|
373 |
+
image_inputs = {}
|
374 |
+
|
375 |
+
if apply_chat_template:
|
376 |
+
text = [self.get_prompt(t) for t in text]
|
377 |
+
|
378 |
+
prompt_strings = text
|
379 |
+
if image_inputs.get("images", None) is not None:
|
380 |
+
|
381 |
+
prompt_strings = []
|
382 |
+
for idx, image_grids in enumerate(image_inputs.pop("image_grids")):
|
383 |
+
if isinstance(image_grids, torch.Tensor):
|
384 |
+
image_grids = image_grids.cpu().numpy()
|
385 |
+
if isinstance(images, (list, tuple)) and isinstance(images[idx], (list, tuple)):
|
386 |
+
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
|
387 |
+
offset = 2 if len(images[idx]) < len(image_grids) else 1 # whether to use both low and high res images
|
388 |
+
all_image_strings = []
|
389 |
+
for i in range(0, len(image_grids), offset):
|
390 |
+
image_grids_i = image_grids[i:i+offset]
|
391 |
+
image_tokens = self.get_image_tokens(image_grids_i)
|
392 |
+
img_ix = i // offset
|
393 |
+
all_image_strings.append(f"Image {img_ix + 1}" + "".join(image_tokens))
|
394 |
+
image_string = "".join(all_image_strings)
|
395 |
+
prompt_strings.append(image_string + text[idx])
|
396 |
+
else:
|
397 |
+
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
|
398 |
+
assert len(image_grids) in [1, 2], "Only one or two crops are supported for single image inputs"
|
399 |
+
image_tokens = self.get_image_tokens(image_grids)
|
400 |
+
image_string = "".join(image_tokens)
|
401 |
+
prompt_strings.append(image_string + text[idx])
|
402 |
+
|
403 |
+
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
404 |
+
|
405 |
+
input_ids = text_inputs["input_ids"]
|
406 |
+
attention_mask = text_inputs["attention_mask"]
|
407 |
+
|
408 |
+
is_list = isinstance(input_ids, (list, tuple))
|
409 |
+
if is_list:
|
410 |
+
input_ids = np.array(input_ids)
|
411 |
+
attention_mask = np.array(attention_mask)
|
412 |
+
|
413 |
+
use_numpy = isinstance(attention_mask, np.ndarray)
|
414 |
+
|
415 |
+
if use_numpy and np.issubdtype(input_ids.dtype, np.floating):
|
416 |
+
input_ids = input_ids.astype(np.int64)
|
417 |
+
attention_mask = attention_mask.astype(np.int64)
|
418 |
+
elif not use_numpy and torch.is_floating_point(input_ids):
|
419 |
+
input_ids = input_ids.to(torch.int64)
|
420 |
+
attention_mask = attention_mask.to(torch.int64)
|
421 |
+
|
422 |
+
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
|
423 |
+
if use_numpy:
|
424 |
+
input_ids, attention_mask = self.insert_bos_numpy(
|
425 |
+
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
|
426 |
+
)
|
427 |
+
else:
|
428 |
+
input_ids, attention_mask = self.insert_bos_torch(
|
429 |
+
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
|
430 |
+
)
|
431 |
+
if is_list:
|
432 |
+
input_ids = input_ids.tolist() # type: ignore
|
433 |
+
attention_mask = attention_mask.tolist() # type: ignore
|
434 |
+
text_inputs["input_ids"] = input_ids
|
435 |
+
text_inputs["attention_mask"] = attention_mask
|
436 |
+
|
437 |
+
if kwargs.get("device", None) is not None:
|
438 |
+
text_inputs = text_inputs.to(device=kwargs.get("device"), non_blocking=True)
|
439 |
+
# there is no bos token in Qwen tokenizer
|
440 |
+
return BatchFeature(
|
441 |
+
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]
|
442 |
+
)
|
443 |
+
|
444 |
+
def batch_decode(self, *args, **kwargs):
|
445 |
+
"""
|
446 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
447 |
+
refer to the docstring of this method for more information.
|
448 |
+
"""
|
449 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
450 |
+
|
451 |
+
def decode(self, *args, **kwargs):
|
452 |
+
"""
|
453 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
454 |
+
the docstring of this method for more information.
|
455 |
+
"""
|
456 |
+
return self.tokenizer.decode(*args, **kwargs)
|
457 |
+
|
458 |
+
@property
|
459 |
+
def model_input_names(self):
|
460 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
461 |
+
image_processor_input_names = self.image_processor.model_input_names
|
462 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
463 |
+
|
464 |
+
|
465 |
+
MolmoActProcessor.register_for_auto_class()
|
processor_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"always_start_with_space": false,
|
3 |
+
"auto_map": {
|
4 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
5 |
+
},
|
6 |
+
"default_inference_len": 65,
|
7 |
+
"image_padding_mask": false,
|
8 |
+
"message_format": "role",
|
9 |
+
"processor_class": "MolmoActProcessor",
|
10 |
+
"prompt_templates": "uber_model",
|
11 |
+
"style": "demo",
|
12 |
+
"system_prompt": "demo_or_style",
|
13 |
+
"use_col_tokens": true
|
14 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,1944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "|<EXTRA_TOKENS_0>|",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "|<EXTRA_TOKENS_1>|",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"content": "|<EXTRA_TOKENS_2>|",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"content": "|<EXTRA_TOKENS_3>|",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"content": "|<EXTRA_TOKENS_4>|",
|
33 |
+
"lstrip": false,
|
34 |
+
"normalized": false,
|
35 |
+
"rstrip": false,
|
36 |
+
"single_word": false
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"content": "|<EXTRA_TOKENS_5>|",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"content": "|<EXTRA_TOKENS_6>|",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"content": "|<EXTRA_TOKENS_7>|",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"content": "|<EXTRA_TOKENS_8>|",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"content": "|<EXTRA_TOKENS_9>|",
|
68 |
+
"lstrip": false,
|
69 |
+
"normalized": false,
|
70 |
+
"rstrip": false,
|
71 |
+
"single_word": false
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"content": "|<EXTRA_TOKENS_10>|",
|
75 |
+
"lstrip": false,
|
76 |
+
"normalized": false,
|
77 |
+
"rstrip": false,
|
78 |
+
"single_word": false
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"content": "|<EXTRA_TOKENS_11>|",
|
82 |
+
"lstrip": false,
|
83 |
+
"normalized": false,
|
84 |
+
"rstrip": false,
|
85 |
+
"single_word": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"content": "|<EXTRA_TOKENS_12>|",
|
89 |
+
"lstrip": false,
|
90 |
+
"normalized": false,
|
91 |
+
"rstrip": false,
|
92 |
+
"single_word": false
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"content": "|<EXTRA_TOKENS_13>|",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"content": "|<EXTRA_TOKENS_14>|",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"content": "|<EXTRA_TOKENS_15>|",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"content": "|<EXTRA_TOKENS_16>|",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"content": "|<EXTRA_TOKENS_17>|",
|
124 |
+
"lstrip": false,
|
125 |
+
"normalized": false,
|
126 |
+
"rstrip": false,
|
127 |
+
"single_word": false
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"content": "|<EXTRA_TOKENS_18>|",
|
131 |
+
"lstrip": false,
|
132 |
+
"normalized": false,
|
133 |
+
"rstrip": false,
|
134 |
+
"single_word": false
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"content": "|<EXTRA_TOKENS_19>|",
|
138 |
+
"lstrip": false,
|
139 |
+
"normalized": false,
|
140 |
+
"rstrip": false,
|
141 |
+
"single_word": false
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"content": "|<EXTRA_TOKENS_20>|",
|
145 |
+
"lstrip": false,
|
146 |
+
"normalized": false,
|
147 |
+
"rstrip": false,
|
148 |
+
"single_word": false
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"content": "|<EXTRA_TOKENS_21>|",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"content": "|<EXTRA_TOKENS_22>|",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"content": "|<EXTRA_TOKENS_23>|",
|
166 |
+
"lstrip": false,
|
167 |
+
"normalized": false,
|
168 |
+
"rstrip": false,
|
169 |
+
"single_word": false
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"content": "|<EXTRA_TOKENS_24>|",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"content": "|<EXTRA_TOKENS_25>|",
|
180 |
+
"lstrip": false,
|
181 |
+
"normalized": false,
|
182 |
+
"rstrip": false,
|
183 |
+
"single_word": false
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"content": "|<EXTRA_TOKENS_26>|",
|
187 |
+
"lstrip": false,
|
188 |
+
"normalized": false,
|
189 |
+
"rstrip": false,
|
190 |
+
"single_word": false
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"content": "|<EXTRA_TOKENS_27>|",
|
194 |
+
"lstrip": false,
|
195 |
+
"normalized": false,
|
196 |
+
"rstrip": false,
|
197 |
+
"single_word": false
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"content": "|<EXTRA_TOKENS_28>|",
|
201 |
+
"lstrip": false,
|
202 |
+
"normalized": false,
|
203 |
+
"rstrip": false,
|
204 |
+
"single_word": false
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"content": "|<EXTRA_TOKENS_29>|",
|
208 |
+
"lstrip": false,
|
209 |
+
"normalized": false,
|
210 |
+
"rstrip": false,
|
211 |
+
"single_word": false
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"content": "|<EXTRA_TOKENS_30>|",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"content": "|<EXTRA_TOKENS_31>|",
|
222 |
+
"lstrip": false,
|
223 |
+
"normalized": false,
|
224 |
+
"rstrip": false,
|
225 |
+
"single_word": false
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"content": "|<EXTRA_TOKENS_32>|",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"content": "|<EXTRA_TOKENS_33>|",
|
236 |
+
"lstrip": false,
|
237 |
+
"normalized": false,
|
238 |
+
"rstrip": false,
|
239 |
+
"single_word": false
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"content": "|<EXTRA_TOKENS_34>|",
|
243 |
+
"lstrip": false,
|
244 |
+
"normalized": false,
|
245 |
+
"rstrip": false,
|
246 |
+
"single_word": false
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"content": "|<EXTRA_TOKENS_35>|",
|
250 |
+
"lstrip": false,
|
251 |
+
"normalized": false,
|
252 |
+
"rstrip": false,
|
253 |
+
"single_word": false
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"content": "|<EXTRA_TOKENS_36>|",
|
257 |
+
"lstrip": false,
|
258 |
+
"normalized": false,
|
259 |
+
"rstrip": false,
|
260 |
+
"single_word": false
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"content": "|<EXTRA_TOKENS_37>|",
|
264 |
+
"lstrip": false,
|
265 |
+
"normalized": false,
|
266 |
+
"rstrip": false,
|
267 |
+
"single_word": false
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"content": "|<EXTRA_TOKENS_38>|",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"content": "|<EXTRA_TOKENS_39>|",
|
278 |
+
"lstrip": false,
|
279 |
+
"normalized": false,
|
280 |
+
"rstrip": false,
|
281 |
+
"single_word": false
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"content": "|<EXTRA_TOKENS_40>|",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"content": "|<EXTRA_TOKENS_41>|",
|
292 |
+
"lstrip": false,
|
293 |
+
"normalized": false,
|
294 |
+
"rstrip": false,
|
295 |
+
"single_word": false
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"content": "|<EXTRA_TOKENS_42>|",
|
299 |
+
"lstrip": false,
|
300 |
+
"normalized": false,
|
301 |
+
"rstrip": false,
|
302 |
+
"single_word": false
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"content": "|<EXTRA_TOKENS_43>|",
|
306 |
+
"lstrip": false,
|
307 |
+
"normalized": false,
|
308 |
+
"rstrip": false,
|
309 |
+
"single_word": false
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"content": "|<EXTRA_TOKENS_44>|",
|
313 |
+
"lstrip": false,
|
314 |
+
"normalized": false,
|
315 |
+
"rstrip": false,
|
316 |
+
"single_word": false
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"content": "|<EXTRA_TOKENS_45>|",
|
320 |
+
"lstrip": false,
|
321 |
+
"normalized": false,
|
322 |
+
"rstrip": false,
|
323 |
+
"single_word": false
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"content": "|<EXTRA_TOKENS_46>|",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"content": "|<EXTRA_TOKENS_47>|",
|
334 |
+
"lstrip": false,
|
335 |
+
"normalized": false,
|
336 |
+
"rstrip": false,
|
337 |
+
"single_word": false
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"content": "|<EXTRA_TOKENS_48>|",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"content": "|<EXTRA_TOKENS_49>|",
|
348 |
+
"lstrip": false,
|
349 |
+
"normalized": false,
|
350 |
+
"rstrip": false,
|
351 |
+
"single_word": false
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"content": "|<EXTRA_TOKENS_50>|",
|
355 |
+
"lstrip": false,
|
356 |
+
"normalized": false,
|
357 |
+
"rstrip": false,
|
358 |
+
"single_word": false
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"content": "|<EXTRA_TOKENS_51>|",
|
362 |
+
"lstrip": false,
|
363 |
+
"normalized": false,
|
364 |
+
"rstrip": false,
|
365 |
+
"single_word": false
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"content": "|<EXTRA_TOKENS_52>|",
|
369 |
+
"lstrip": false,
|
370 |
+
"normalized": false,
|
371 |
+
"rstrip": false,
|
372 |
+
"single_word": false
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"content": "|<EXTRA_TOKENS_53>|",
|
376 |
+
"lstrip": false,
|
377 |
+
"normalized": false,
|
378 |
+
"rstrip": false,
|
379 |
+
"single_word": false
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"content": "|<EXTRA_TOKENS_54>|",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"content": "|<EXTRA_TOKENS_55>|",
|
390 |
+
"lstrip": false,
|
391 |
+
"normalized": false,
|
392 |
+
"rstrip": false,
|
393 |
+
"single_word": false
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"content": "|<EXTRA_TOKENS_56>|",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"content": "|<EXTRA_TOKENS_57>|",
|
404 |
+
"lstrip": false,
|
405 |
+
"normalized": false,
|
406 |
+
"rstrip": false,
|
407 |
+
"single_word": false
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"content": "|<EXTRA_TOKENS_58>|",
|
411 |
+
"lstrip": false,
|
412 |
+
"normalized": false,
|
413 |
+
"rstrip": false,
|
414 |
+
"single_word": false
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"content": "|<EXTRA_TOKENS_59>|",
|
418 |
+
"lstrip": false,
|
419 |
+
"normalized": false,
|
420 |
+
"rstrip": false,
|
421 |
+
"single_word": false
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"content": "|<EXTRA_TOKENS_60>|",
|
425 |
+
"lstrip": false,
|
426 |
+
"normalized": false,
|
427 |
+
"rstrip": false,
|
428 |
+
"single_word": false
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"content": "|<EXTRA_TOKENS_61>|",
|
432 |
+
"lstrip": false,
|
433 |
+
"normalized": false,
|
434 |
+
"rstrip": false,
|
435 |
+
"single_word": false
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"content": "|<EXTRA_TOKENS_62>|",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"content": "|<EXTRA_TOKENS_63>|",
|
446 |
+
"lstrip": false,
|
447 |
+
"normalized": false,
|
448 |
+
"rstrip": false,
|
449 |
+
"single_word": false
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"content": "|<EXTRA_TOKENS_64>|",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"content": "|<EXTRA_TOKENS_65>|",
|
460 |
+
"lstrip": false,
|
461 |
+
"normalized": false,
|
462 |
+
"rstrip": false,
|
463 |
+
"single_word": false
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"content": "|<EXTRA_TOKENS_66>|",
|
467 |
+
"lstrip": false,
|
468 |
+
"normalized": false,
|
469 |
+
"rstrip": false,
|
470 |
+
"single_word": false
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"content": "|<EXTRA_TOKENS_67>|",
|
474 |
+
"lstrip": false,
|
475 |
+
"normalized": false,
|
476 |
+
"rstrip": false,
|
477 |
+
"single_word": false
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"content": "|<EXTRA_TOKENS_68>|",
|
481 |
+
"lstrip": false,
|
482 |
+
"normalized": false,
|
483 |
+
"rstrip": false,
|
484 |
+
"single_word": false
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"content": "|<EXTRA_TOKENS_69>|",
|
488 |
+
"lstrip": false,
|
489 |
+
"normalized": false,
|
490 |
+
"rstrip": false,
|
491 |
+
"single_word": false
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"content": "|<EXTRA_TOKENS_70>|",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"content": "|<EXTRA_TOKENS_71>|",
|
502 |
+
"lstrip": false,
|
503 |
+
"normalized": false,
|
504 |
+
"rstrip": false,
|
505 |
+
"single_word": false
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"content": "|<EXTRA_TOKENS_72>|",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"content": "|<EXTRA_TOKENS_73>|",
|
516 |
+
"lstrip": false,
|
517 |
+
"normalized": false,
|
518 |
+
"rstrip": false,
|
519 |
+
"single_word": false
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"content": "|<EXTRA_TOKENS_74>|",
|
523 |
+
"lstrip": false,
|
524 |
+
"normalized": false,
|
525 |
+
"rstrip": false,
|
526 |
+
"single_word": false
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"content": "|<EXTRA_TOKENS_75>|",
|
530 |
+
"lstrip": false,
|
531 |
+
"normalized": false,
|
532 |
+
"rstrip": false,
|
533 |
+
"single_word": false
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"content": "|<EXTRA_TOKENS_76>|",
|
537 |
+
"lstrip": false,
|
538 |
+
"normalized": false,
|
539 |
+
"rstrip": false,
|
540 |
+
"single_word": false
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"content": "|<EXTRA_TOKENS_77>|",
|
544 |
+
"lstrip": false,
|
545 |
+
"normalized": false,
|
546 |
+
"rstrip": false,
|
547 |
+
"single_word": false
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"content": "|<EXTRA_TOKENS_78>|",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"content": "|<EXTRA_TOKENS_79>|",
|
558 |
+
"lstrip": false,
|
559 |
+
"normalized": false,
|
560 |
+
"rstrip": false,
|
561 |
+
"single_word": false
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"content": "|<EXTRA_TOKENS_80>|",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"content": "|<EXTRA_TOKENS_81>|",
|
572 |
+
"lstrip": false,
|
573 |
+
"normalized": false,
|
574 |
+
"rstrip": false,
|
575 |
+
"single_word": false
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"content": "|<EXTRA_TOKENS_82>|",
|
579 |
+
"lstrip": false,
|
580 |
+
"normalized": false,
|
581 |
+
"rstrip": false,
|
582 |
+
"single_word": false
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"content": "|<EXTRA_TOKENS_83>|",
|
586 |
+
"lstrip": false,
|
587 |
+
"normalized": false,
|
588 |
+
"rstrip": false,
|
589 |
+
"single_word": false
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"content": "|<EXTRA_TOKENS_84>|",
|
593 |
+
"lstrip": false,
|
594 |
+
"normalized": false,
|
595 |
+
"rstrip": false,
|
596 |
+
"single_word": false
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"content": "|<EXTRA_TOKENS_85>|",
|
600 |
+
"lstrip": false,
|
601 |
+
"normalized": false,
|
602 |
+
"rstrip": false,
|
603 |
+
"single_word": false
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"content": "|<EXTRA_TOKENS_86>|",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"content": "|<EXTRA_TOKENS_87>|",
|
614 |
+
"lstrip": false,
|
615 |
+
"normalized": false,
|
616 |
+
"rstrip": false,
|
617 |
+
"single_word": false
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"content": "|<EXTRA_TOKENS_88>|",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"content": "|<EXTRA_TOKENS_89>|",
|
628 |
+
"lstrip": false,
|
629 |
+
"normalized": false,
|
630 |
+
"rstrip": false,
|
631 |
+
"single_word": false
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"content": "|<EXTRA_TOKENS_90>|",
|
635 |
+
"lstrip": false,
|
636 |
+
"normalized": false,
|
637 |
+
"rstrip": false,
|
638 |
+
"single_word": false
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"content": "|<EXTRA_TOKENS_91>|",
|
642 |
+
"lstrip": false,
|
643 |
+
"normalized": false,
|
644 |
+
"rstrip": false,
|
645 |
+
"single_word": false
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"content": "|<EXTRA_TOKENS_92>|",
|
649 |
+
"lstrip": false,
|
650 |
+
"normalized": false,
|
651 |
+
"rstrip": false,
|
652 |
+
"single_word": false
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"content": "|<EXTRA_TOKENS_93>|",
|
656 |
+
"lstrip": false,
|
657 |
+
"normalized": false,
|
658 |
+
"rstrip": false,
|
659 |
+
"single_word": false
|
660 |
+
},
|
661 |
+
{
|
662 |
+
"content": "|<EXTRA_TOKENS_94>|",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"content": "|<EXTRA_TOKENS_95>|",
|
670 |
+
"lstrip": false,
|
671 |
+
"normalized": false,
|
672 |
+
"rstrip": false,
|
673 |
+
"single_word": false
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"content": "|<EXTRA_TOKENS_96>|",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"content": "|<EXTRA_TOKENS_97>|",
|
684 |
+
"lstrip": false,
|
685 |
+
"normalized": false,
|
686 |
+
"rstrip": false,
|
687 |
+
"single_word": false
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"content": "|<EXTRA_TOKENS_98>|",
|
691 |
+
"lstrip": false,
|
692 |
+
"normalized": false,
|
693 |
+
"rstrip": false,
|
694 |
+
"single_word": false
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"content": "|<EXTRA_TOKENS_99>|",
|
698 |
+
"lstrip": false,
|
699 |
+
"normalized": false,
|
700 |
+
"rstrip": false,
|
701 |
+
"single_word": false
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"content": "|<EXTRA_TOKENS_100>|",
|
705 |
+
"lstrip": false,
|
706 |
+
"normalized": false,
|
707 |
+
"rstrip": false,
|
708 |
+
"single_word": false
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"content": "|<EXTRA_TOKENS_101>|",
|
712 |
+
"lstrip": false,
|
713 |
+
"normalized": false,
|
714 |
+
"rstrip": false,
|
715 |
+
"single_word": false
|
716 |
+
},
|
717 |
+
{
|
718 |
+
"content": "|<EXTRA_TOKENS_102>|",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"content": "|<EXTRA_TOKENS_103>|",
|
726 |
+
"lstrip": false,
|
727 |
+
"normalized": false,
|
728 |
+
"rstrip": false,
|
729 |
+
"single_word": false
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"content": "|<EXTRA_TOKENS_104>|",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"content": "|<EXTRA_TOKENS_105>|",
|
740 |
+
"lstrip": false,
|
741 |
+
"normalized": false,
|
742 |
+
"rstrip": false,
|
743 |
+
"single_word": false
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"content": "|<EXTRA_TOKENS_106>|",
|
747 |
+
"lstrip": false,
|
748 |
+
"normalized": false,
|
749 |
+
"rstrip": false,
|
750 |
+
"single_word": false
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"content": "|<EXTRA_TOKENS_107>|",
|
754 |
+
"lstrip": false,
|
755 |
+
"normalized": false,
|
756 |
+
"rstrip": false,
|
757 |
+
"single_word": false
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"content": "|<EXTRA_TOKENS_108>|",
|
761 |
+
"lstrip": false,
|
762 |
+
"normalized": false,
|
763 |
+
"rstrip": false,
|
764 |
+
"single_word": false
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"content": "|<EXTRA_TOKENS_109>|",
|
768 |
+
"lstrip": false,
|
769 |
+
"normalized": false,
|
770 |
+
"rstrip": false,
|
771 |
+
"single_word": false
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"content": "|<EXTRA_TOKENS_110>|",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"content": "|<EXTRA_TOKENS_111>|",
|
782 |
+
"lstrip": false,
|
783 |
+
"normalized": false,
|
784 |
+
"rstrip": false,
|
785 |
+
"single_word": false
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"content": "|<EXTRA_TOKENS_112>|",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"content": "|<EXTRA_TOKENS_113>|",
|
796 |
+
"lstrip": false,
|
797 |
+
"normalized": false,
|
798 |
+
"rstrip": false,
|
799 |
+
"single_word": false
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"content": "|<EXTRA_TOKENS_114>|",
|
803 |
+
"lstrip": false,
|
804 |
+
"normalized": false,
|
805 |
+
"rstrip": false,
|
806 |
+
"single_word": false
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"content": "|<EXTRA_TOKENS_115>|",
|
810 |
+
"lstrip": false,
|
811 |
+
"normalized": false,
|
812 |
+
"rstrip": false,
|
813 |
+
"single_word": false
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"content": "|<EXTRA_TOKENS_116>|",
|
817 |
+
"lstrip": false,
|
818 |
+
"normalized": false,
|
819 |
+
"rstrip": false,
|
820 |
+
"single_word": false
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"content": "|<EXTRA_TOKENS_117>|",
|
824 |
+
"lstrip": false,
|
825 |
+
"normalized": false,
|
826 |
+
"rstrip": false,
|
827 |
+
"single_word": false
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"content": "|<EXTRA_TOKENS_118>|",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"content": "|<EXTRA_TOKENS_119>|",
|
838 |
+
"lstrip": false,
|
839 |
+
"normalized": false,
|
840 |
+
"rstrip": false,
|
841 |
+
"single_word": false
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"content": "|<EXTRA_TOKENS_120>|",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"content": "|<EXTRA_TOKENS_121>|",
|
852 |
+
"lstrip": false,
|
853 |
+
"normalized": false,
|
854 |
+
"rstrip": false,
|
855 |
+
"single_word": false
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"content": "|<EXTRA_TOKENS_122>|",
|
859 |
+
"lstrip": false,
|
860 |
+
"normalized": false,
|
861 |
+
"rstrip": false,
|
862 |
+
"single_word": false
|
863 |
+
},
|
864 |
+
{
|
865 |
+
"content": "|<EXTRA_TOKENS_123>|",
|
866 |
+
"lstrip": false,
|
867 |
+
"normalized": false,
|
868 |
+
"rstrip": false,
|
869 |
+
"single_word": false
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"content": "|<EXTRA_TOKENS_124>|",
|
873 |
+
"lstrip": false,
|
874 |
+
"normalized": false,
|
875 |
+
"rstrip": false,
|
876 |
+
"single_word": false
|
877 |
+
},
|
878 |
+
{
|
879 |
+
"content": "|<EXTRA_TOKENS_125>|",
|
880 |
+
"lstrip": false,
|
881 |
+
"normalized": false,
|
882 |
+
"rstrip": false,
|
883 |
+
"single_word": false
|
884 |
+
},
|
885 |
+
{
|
886 |
+
"content": "|<EXTRA_TOKENS_126>|",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"content": "|<EXTRA_TOKENS_127>|",
|
894 |
+
"lstrip": false,
|
895 |
+
"normalized": false,
|
896 |
+
"rstrip": false,
|
897 |
+
"single_word": false
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"content": "|<EXTRA_TOKENS_128>|",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false
|
905 |
+
},
|
906 |
+
{
|
907 |
+
"content": "|<EXTRA_TOKENS_129>|",
|
908 |
+
"lstrip": false,
|
909 |
+
"normalized": false,
|
910 |
+
"rstrip": false,
|
911 |
+
"single_word": false
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"content": "|<EXTRA_TOKENS_130>|",
|
915 |
+
"lstrip": false,
|
916 |
+
"normalized": false,
|
917 |
+
"rstrip": false,
|
918 |
+
"single_word": false
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"content": "|<EXTRA_TOKENS_131>|",
|
922 |
+
"lstrip": false,
|
923 |
+
"normalized": false,
|
924 |
+
"rstrip": false,
|
925 |
+
"single_word": false
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"content": "|<EXTRA_TOKENS_132>|",
|
929 |
+
"lstrip": false,
|
930 |
+
"normalized": false,
|
931 |
+
"rstrip": false,
|
932 |
+
"single_word": false
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"content": "|<EXTRA_TOKENS_133>|",
|
936 |
+
"lstrip": false,
|
937 |
+
"normalized": false,
|
938 |
+
"rstrip": false,
|
939 |
+
"single_word": false
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"content": "|<EXTRA_TOKENS_134>|",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"content": "|<EXTRA_TOKENS_135>|",
|
950 |
+
"lstrip": false,
|
951 |
+
"normalized": false,
|
952 |
+
"rstrip": false,
|
953 |
+
"single_word": false
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"content": "|<EXTRA_TOKENS_136>|",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"content": "|<EXTRA_TOKENS_137>|",
|
964 |
+
"lstrip": false,
|
965 |
+
"normalized": false,
|
966 |
+
"rstrip": false,
|
967 |
+
"single_word": false
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"content": "|<EXTRA_TOKENS_138>|",
|
971 |
+
"lstrip": false,
|
972 |
+
"normalized": false,
|
973 |
+
"rstrip": false,
|
974 |
+
"single_word": false
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"content": "|<EXTRA_TOKENS_139>|",
|
978 |
+
"lstrip": false,
|
979 |
+
"normalized": false,
|
980 |
+
"rstrip": false,
|
981 |
+
"single_word": false
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"content": "|<EXTRA_TOKENS_140>|",
|
985 |
+
"lstrip": false,
|
986 |
+
"normalized": false,
|
987 |
+
"rstrip": false,
|
988 |
+
"single_word": false
|
989 |
+
},
|
990 |
+
{
|
991 |
+
"content": "|<EXTRA_TOKENS_141>|",
|
992 |
+
"lstrip": false,
|
993 |
+
"normalized": false,
|
994 |
+
"rstrip": false,
|
995 |
+
"single_word": false
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"content": "|<EXTRA_TOKENS_142>|",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"content": "|<EXTRA_TOKENS_143>|",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"content": "|<EXTRA_TOKENS_144>|",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"content": "|<EXTRA_TOKENS_145>|",
|
1020 |
+
"lstrip": false,
|
1021 |
+
"normalized": false,
|
1022 |
+
"rstrip": false,
|
1023 |
+
"single_word": false
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"content": "|<EXTRA_TOKENS_146>|",
|
1027 |
+
"lstrip": false,
|
1028 |
+
"normalized": false,
|
1029 |
+
"rstrip": false,
|
1030 |
+
"single_word": false
|
1031 |
+
},
|
1032 |
+
{
|
1033 |
+
"content": "|<EXTRA_TOKENS_147>|",
|
1034 |
+
"lstrip": false,
|
1035 |
+
"normalized": false,
|
1036 |
+
"rstrip": false,
|
1037 |
+
"single_word": false
|
1038 |
+
},
|
1039 |
+
{
|
1040 |
+
"content": "|<EXTRA_TOKENS_148>|",
|
1041 |
+
"lstrip": false,
|
1042 |
+
"normalized": false,
|
1043 |
+
"rstrip": false,
|
1044 |
+
"single_word": false
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"content": "|<EXTRA_TOKENS_149>|",
|
1048 |
+
"lstrip": false,
|
1049 |
+
"normalized": false,
|
1050 |
+
"rstrip": false,
|
1051 |
+
"single_word": false
|
1052 |
+
},
|
1053 |
+
{
|
1054 |
+
"content": "|<EXTRA_TOKENS_150>|",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"content": "|<EXTRA_TOKENS_151>|",
|
1062 |
+
"lstrip": false,
|
1063 |
+
"normalized": false,
|
1064 |
+
"rstrip": false,
|
1065 |
+
"single_word": false
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"content": "|<EXTRA_TOKENS_152>|",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"content": "|<EXTRA_TOKENS_153>|",
|
1076 |
+
"lstrip": false,
|
1077 |
+
"normalized": false,
|
1078 |
+
"rstrip": false,
|
1079 |
+
"single_word": false
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"content": "|<EXTRA_TOKENS_154>|",
|
1083 |
+
"lstrip": false,
|
1084 |
+
"normalized": false,
|
1085 |
+
"rstrip": false,
|
1086 |
+
"single_word": false
|
1087 |
+
},
|
1088 |
+
{
|
1089 |
+
"content": "|<EXTRA_TOKENS_155>|",
|
1090 |
+
"lstrip": false,
|
1091 |
+
"normalized": false,
|
1092 |
+
"rstrip": false,
|
1093 |
+
"single_word": false
|
1094 |
+
},
|
1095 |
+
{
|
1096 |
+
"content": "|<EXTRA_TOKENS_156>|",
|
1097 |
+
"lstrip": false,
|
1098 |
+
"normalized": false,
|
1099 |
+
"rstrip": false,
|
1100 |
+
"single_word": false
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"content": "|<EXTRA_TOKENS_157>|",
|
1104 |
+
"lstrip": false,
|
1105 |
+
"normalized": false,
|
1106 |
+
"rstrip": false,
|
1107 |
+
"single_word": false
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"content": "|<EXTRA_TOKENS_158>|",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"content": "|<EXTRA_TOKENS_159>|",
|
1118 |
+
"lstrip": false,
|
1119 |
+
"normalized": false,
|
1120 |
+
"rstrip": false,
|
1121 |
+
"single_word": false
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"content": "|<EXTRA_TOKENS_160>|",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"content": "|<EXTRA_TOKENS_161>|",
|
1132 |
+
"lstrip": false,
|
1133 |
+
"normalized": false,
|
1134 |
+
"rstrip": false,
|
1135 |
+
"single_word": false
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"content": "|<EXTRA_TOKENS_162>|",
|
1139 |
+
"lstrip": false,
|
1140 |
+
"normalized": false,
|
1141 |
+
"rstrip": false,
|
1142 |
+
"single_word": false
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"content": "|<EXTRA_TOKENS_163>|",
|
1146 |
+
"lstrip": false,
|
1147 |
+
"normalized": false,
|
1148 |
+
"rstrip": false,
|
1149 |
+
"single_word": false
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"content": "|<EXTRA_TOKENS_164>|",
|
1153 |
+
"lstrip": false,
|
1154 |
+
"normalized": false,
|
1155 |
+
"rstrip": false,
|
1156 |
+
"single_word": false
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"content": "|<EXTRA_TOKENS_165>|",
|
1160 |
+
"lstrip": false,
|
1161 |
+
"normalized": false,
|
1162 |
+
"rstrip": false,
|
1163 |
+
"single_word": false
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"content": "|<EXTRA_TOKENS_166>|",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"content": "|<EXTRA_TOKENS_167>|",
|
1174 |
+
"lstrip": false,
|
1175 |
+
"normalized": false,
|
1176 |
+
"rstrip": false,
|
1177 |
+
"single_word": false
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"content": "|<EXTRA_TOKENS_168>|",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"content": "|<EXTRA_TOKENS_169>|",
|
1188 |
+
"lstrip": false,
|
1189 |
+
"normalized": false,
|
1190 |
+
"rstrip": false,
|
1191 |
+
"single_word": false
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"content": "|<EXTRA_TOKENS_170>|",
|
1195 |
+
"lstrip": false,
|
1196 |
+
"normalized": false,
|
1197 |
+
"rstrip": false,
|
1198 |
+
"single_word": false
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"content": "|<EXTRA_TOKENS_171>|",
|
1202 |
+
"lstrip": false,
|
1203 |
+
"normalized": false,
|
1204 |
+
"rstrip": false,
|
1205 |
+
"single_word": false
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"content": "|<EXTRA_TOKENS_172>|",
|
1209 |
+
"lstrip": false,
|
1210 |
+
"normalized": false,
|
1211 |
+
"rstrip": false,
|
1212 |
+
"single_word": false
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"content": "|<EXTRA_TOKENS_173>|",
|
1216 |
+
"lstrip": false,
|
1217 |
+
"normalized": false,
|
1218 |
+
"rstrip": false,
|
1219 |
+
"single_word": false
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"content": "|<EXTRA_TOKENS_174>|",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"content": "|<EXTRA_TOKENS_175>|",
|
1230 |
+
"lstrip": false,
|
1231 |
+
"normalized": false,
|
1232 |
+
"rstrip": false,
|
1233 |
+
"single_word": false
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"content": "|<EXTRA_TOKENS_176>|",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"content": "|<EXTRA_TOKENS_177>|",
|
1244 |
+
"lstrip": false,
|
1245 |
+
"normalized": false,
|
1246 |
+
"rstrip": false,
|
1247 |
+
"single_word": false
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"content": "|<EXTRA_TOKENS_178>|",
|
1251 |
+
"lstrip": false,
|
1252 |
+
"normalized": false,
|
1253 |
+
"rstrip": false,
|
1254 |
+
"single_word": false
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"content": "|<EXTRA_TOKENS_179>|",
|
1258 |
+
"lstrip": false,
|
1259 |
+
"normalized": false,
|
1260 |
+
"rstrip": false,
|
1261 |
+
"single_word": false
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"content": "|<EXTRA_TOKENS_180>|",
|
1265 |
+
"lstrip": false,
|
1266 |
+
"normalized": false,
|
1267 |
+
"rstrip": false,
|
1268 |
+
"single_word": false
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"content": "|<EXTRA_TOKENS_181>|",
|
1272 |
+
"lstrip": false,
|
1273 |
+
"normalized": false,
|
1274 |
+
"rstrip": false,
|
1275 |
+
"single_word": false
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"content": "|<EXTRA_TOKENS_182>|",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"content": "|<EXTRA_TOKENS_183>|",
|
1286 |
+
"lstrip": false,
|
1287 |
+
"normalized": false,
|
1288 |
+
"rstrip": false,
|
1289 |
+
"single_word": false
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"content": "|<EXTRA_TOKENS_184>|",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"content": "|<EXTRA_TOKENS_185>|",
|
1300 |
+
"lstrip": false,
|
1301 |
+
"normalized": false,
|
1302 |
+
"rstrip": false,
|
1303 |
+
"single_word": false
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"content": "|<EXTRA_TOKENS_186>|",
|
1307 |
+
"lstrip": false,
|
1308 |
+
"normalized": false,
|
1309 |
+
"rstrip": false,
|
1310 |
+
"single_word": false
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"content": "|<EXTRA_TOKENS_187>|",
|
1314 |
+
"lstrip": false,
|
1315 |
+
"normalized": false,
|
1316 |
+
"rstrip": false,
|
1317 |
+
"single_word": false
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"content": "|<EXTRA_TOKENS_188>|",
|
1321 |
+
"lstrip": false,
|
1322 |
+
"normalized": false,
|
1323 |
+
"rstrip": false,
|
1324 |
+
"single_word": false
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"content": "|<EXTRA_TOKENS_189>|",
|
1328 |
+
"lstrip": false,
|
1329 |
+
"normalized": false,
|
1330 |
+
"rstrip": false,
|
1331 |
+
"single_word": false
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"content": "|<EXTRA_TOKENS_190>|",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"content": "|<EXTRA_TOKENS_191>|",
|
1342 |
+
"lstrip": false,
|
1343 |
+
"normalized": false,
|
1344 |
+
"rstrip": false,
|
1345 |
+
"single_word": false
|
1346 |
+
},
|
1347 |
+
{
|
1348 |
+
"content": "|<EXTRA_TOKENS_192>|",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"content": "|<EXTRA_TOKENS_193>|",
|
1356 |
+
"lstrip": false,
|
1357 |
+
"normalized": false,
|
1358 |
+
"rstrip": false,
|
1359 |
+
"single_word": false
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"content": "|<EXTRA_TOKENS_194>|",
|
1363 |
+
"lstrip": false,
|
1364 |
+
"normalized": false,
|
1365 |
+
"rstrip": false,
|
1366 |
+
"single_word": false
|
1367 |
+
},
|
1368 |
+
{
|
1369 |
+
"content": "|<EXTRA_TOKENS_195>|",
|
1370 |
+
"lstrip": false,
|
1371 |
+
"normalized": false,
|
1372 |
+
"rstrip": false,
|
1373 |
+
"single_word": false
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"content": "|<EXTRA_TOKENS_196>|",
|
1377 |
+
"lstrip": false,
|
1378 |
+
"normalized": false,
|
1379 |
+
"rstrip": false,
|
1380 |
+
"single_word": false
|
1381 |
+
},
|
1382 |
+
{
|
1383 |
+
"content": "|<EXTRA_TOKENS_197>|",
|
1384 |
+
"lstrip": false,
|
1385 |
+
"normalized": false,
|
1386 |
+
"rstrip": false,
|
1387 |
+
"single_word": false
|
1388 |
+
},
|
1389 |
+
{
|
1390 |
+
"content": "|<EXTRA_TOKENS_198>|",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"content": "|<EXTRA_TOKENS_199>|",
|
1398 |
+
"lstrip": false,
|
1399 |
+
"normalized": false,
|
1400 |
+
"rstrip": false,
|
1401 |
+
"single_word": false
|
1402 |
+
},
|
1403 |
+
{
|
1404 |
+
"content": "|<EXTRA_TOKENS_200>|",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false
|
1409 |
+
},
|
1410 |
+
{
|
1411 |
+
"content": "|<EXTRA_TOKENS_201>|",
|
1412 |
+
"lstrip": false,
|
1413 |
+
"normalized": false,
|
1414 |
+
"rstrip": false,
|
1415 |
+
"single_word": false
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"content": "|<EXTRA_TOKENS_202>|",
|
1419 |
+
"lstrip": false,
|
1420 |
+
"normalized": false,
|
1421 |
+
"rstrip": false,
|
1422 |
+
"single_word": false
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"content": "|<EXTRA_TOKENS_203>|",
|
1426 |
+
"lstrip": false,
|
1427 |
+
"normalized": false,
|
1428 |
+
"rstrip": false,
|
1429 |
+
"single_word": false
|
1430 |
+
},
|
1431 |
+
{
|
1432 |
+
"content": "|<EXTRA_TOKENS_204>|",
|
1433 |
+
"lstrip": false,
|
1434 |
+
"normalized": false,
|
1435 |
+
"rstrip": false,
|
1436 |
+
"single_word": false
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"content": "|<EXTRA_TOKENS_205>|",
|
1440 |
+
"lstrip": false,
|
1441 |
+
"normalized": false,
|
1442 |
+
"rstrip": false,
|
1443 |
+
"single_word": false
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"content": "|<EXTRA_TOKENS_206>|",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"content": "|<EXTRA_TOKENS_207>|",
|
1454 |
+
"lstrip": false,
|
1455 |
+
"normalized": false,
|
1456 |
+
"rstrip": false,
|
1457 |
+
"single_word": false
|
1458 |
+
},
|
1459 |
+
{
|
1460 |
+
"content": "|<EXTRA_TOKENS_208>|",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"content": "|<EXTRA_TOKENS_209>|",
|
1468 |
+
"lstrip": false,
|
1469 |
+
"normalized": false,
|
1470 |
+
"rstrip": false,
|
1471 |
+
"single_word": false
|
1472 |
+
},
|
1473 |
+
{
|
1474 |
+
"content": "|<EXTRA_TOKENS_210>|",
|
1475 |
+
"lstrip": false,
|
1476 |
+
"normalized": false,
|
1477 |
+
"rstrip": false,
|
1478 |
+
"single_word": false
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"content": "|<EXTRA_TOKENS_211>|",
|
1482 |
+
"lstrip": false,
|
1483 |
+
"normalized": false,
|
1484 |
+
"rstrip": false,
|
1485 |
+
"single_word": false
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"content": "|<EXTRA_TOKENS_212>|",
|
1489 |
+
"lstrip": false,
|
1490 |
+
"normalized": false,
|
1491 |
+
"rstrip": false,
|
1492 |
+
"single_word": false
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"content": "|<EXTRA_TOKENS_213>|",
|
1496 |
+
"lstrip": false,
|
1497 |
+
"normalized": false,
|
1498 |
+
"rstrip": false,
|
1499 |
+
"single_word": false
|
1500 |
+
},
|
1501 |
+
{
|
1502 |
+
"content": "|<EXTRA_TOKENS_214>|",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"content": "|<EXTRA_TOKENS_215>|",
|
1510 |
+
"lstrip": false,
|
1511 |
+
"normalized": false,
|
1512 |
+
"rstrip": false,
|
1513 |
+
"single_word": false
|
1514 |
+
},
|
1515 |
+
{
|
1516 |
+
"content": "|<EXTRA_TOKENS_216>|",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"content": "|<EXTRA_TOKENS_217>|",
|
1524 |
+
"lstrip": false,
|
1525 |
+
"normalized": false,
|
1526 |
+
"rstrip": false,
|
1527 |
+
"single_word": false
|
1528 |
+
},
|
1529 |
+
{
|
1530 |
+
"content": "|<EXTRA_TOKENS_218>|",
|
1531 |
+
"lstrip": false,
|
1532 |
+
"normalized": false,
|
1533 |
+
"rstrip": false,
|
1534 |
+
"single_word": false
|
1535 |
+
},
|
1536 |
+
{
|
1537 |
+
"content": "|<EXTRA_TOKENS_219>|",
|
1538 |
+
"lstrip": false,
|
1539 |
+
"normalized": false,
|
1540 |
+
"rstrip": false,
|
1541 |
+
"single_word": false
|
1542 |
+
},
|
1543 |
+
{
|
1544 |
+
"content": "|<EXTRA_TOKENS_220>|",
|
1545 |
+
"lstrip": false,
|
1546 |
+
"normalized": false,
|
1547 |
+
"rstrip": false,
|
1548 |
+
"single_word": false
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"content": "|<EXTRA_TOKENS_221>|",
|
1552 |
+
"lstrip": false,
|
1553 |
+
"normalized": false,
|
1554 |
+
"rstrip": false,
|
1555 |
+
"single_word": false
|
1556 |
+
},
|
1557 |
+
{
|
1558 |
+
"content": "|<EXTRA_TOKENS_222>|",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"content": "|<EXTRA_TOKENS_223>|",
|
1566 |
+
"lstrip": false,
|
1567 |
+
"normalized": false,
|
1568 |
+
"rstrip": false,
|
1569 |
+
"single_word": false
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"content": "|<EXTRA_TOKENS_224>|",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"content": "|<EXTRA_TOKENS_225>|",
|
1580 |
+
"lstrip": false,
|
1581 |
+
"normalized": false,
|
1582 |
+
"rstrip": false,
|
1583 |
+
"single_word": false
|
1584 |
+
},
|
1585 |
+
{
|
1586 |
+
"content": "|<EXTRA_TOKENS_226>|",
|
1587 |
+
"lstrip": false,
|
1588 |
+
"normalized": false,
|
1589 |
+
"rstrip": false,
|
1590 |
+
"single_word": false
|
1591 |
+
},
|
1592 |
+
{
|
1593 |
+
"content": "|<EXTRA_TOKENS_227>|",
|
1594 |
+
"lstrip": false,
|
1595 |
+
"normalized": false,
|
1596 |
+
"rstrip": false,
|
1597 |
+
"single_word": false
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"content": "|<EXTRA_TOKENS_228>|",
|
1601 |
+
"lstrip": false,
|
1602 |
+
"normalized": false,
|
1603 |
+
"rstrip": false,
|
1604 |
+
"single_word": false
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"content": "|<EXTRA_TOKENS_229>|",
|
1608 |
+
"lstrip": false,
|
1609 |
+
"normalized": false,
|
1610 |
+
"rstrip": false,
|
1611 |
+
"single_word": false
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"content": "|<EXTRA_TOKENS_230>|",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false
|
1619 |
+
},
|
1620 |
+
{
|
1621 |
+
"content": "|<EXTRA_TOKENS_231>|",
|
1622 |
+
"lstrip": false,
|
1623 |
+
"normalized": false,
|
1624 |
+
"rstrip": false,
|
1625 |
+
"single_word": false
|
1626 |
+
},
|
1627 |
+
{
|
1628 |
+
"content": "|<EXTRA_TOKENS_232>|",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"content": "|<EXTRA_TOKENS_233>|",
|
1636 |
+
"lstrip": false,
|
1637 |
+
"normalized": false,
|
1638 |
+
"rstrip": false,
|
1639 |
+
"single_word": false
|
1640 |
+
},
|
1641 |
+
{
|
1642 |
+
"content": "|<EXTRA_TOKENS_234>|",
|
1643 |
+
"lstrip": false,
|
1644 |
+
"normalized": false,
|
1645 |
+
"rstrip": false,
|
1646 |
+
"single_word": false
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"content": "|<EXTRA_TOKENS_235>|",
|
1650 |
+
"lstrip": false,
|
1651 |
+
"normalized": false,
|
1652 |
+
"rstrip": false,
|
1653 |
+
"single_word": false
|
1654 |
+
},
|
1655 |
+
{
|
1656 |
+
"content": "|<EXTRA_TOKENS_236>|",
|
1657 |
+
"lstrip": false,
|
1658 |
+
"normalized": false,
|
1659 |
+
"rstrip": false,
|
1660 |
+
"single_word": false
|
1661 |
+
},
|
1662 |
+
{
|
1663 |
+
"content": "|<EXTRA_TOKENS_237>|",
|
1664 |
+
"lstrip": false,
|
1665 |
+
"normalized": false,
|
1666 |
+
"rstrip": false,
|
1667 |
+
"single_word": false
|
1668 |
+
},
|
1669 |
+
{
|
1670 |
+
"content": "|<EXTRA_TOKENS_238>|",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"content": "|<EXTRA_TOKENS_239>|",
|
1678 |
+
"lstrip": false,
|
1679 |
+
"normalized": false,
|
1680 |
+
"rstrip": false,
|
1681 |
+
"single_word": false
|
1682 |
+
},
|
1683 |
+
{
|
1684 |
+
"content": "|<EXTRA_TOKENS_240>|",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"content": "|<EXTRA_TOKENS_241>|",
|
1692 |
+
"lstrip": false,
|
1693 |
+
"normalized": false,
|
1694 |
+
"rstrip": false,
|
1695 |
+
"single_word": false
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"content": "|<EXTRA_TOKENS_242>|",
|
1699 |
+
"lstrip": false,
|
1700 |
+
"normalized": false,
|
1701 |
+
"rstrip": false,
|
1702 |
+
"single_word": false
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"content": "|<EXTRA_TOKENS_243>|",
|
1706 |
+
"lstrip": false,
|
1707 |
+
"normalized": false,
|
1708 |
+
"rstrip": false,
|
1709 |
+
"single_word": false
|
1710 |
+
},
|
1711 |
+
{
|
1712 |
+
"content": "|<EXTRA_TOKENS_244>|",
|
1713 |
+
"lstrip": false,
|
1714 |
+
"normalized": false,
|
1715 |
+
"rstrip": false,
|
1716 |
+
"single_word": false
|
1717 |
+
},
|
1718 |
+
{
|
1719 |
+
"content": "|<EXTRA_TOKENS_245>|",
|
1720 |
+
"lstrip": false,
|
1721 |
+
"normalized": false,
|
1722 |
+
"rstrip": false,
|
1723 |
+
"single_word": false
|
1724 |
+
},
|
1725 |
+
{
|
1726 |
+
"content": "|<EXTRA_TOKENS_246>|",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"content": "|<EXTRA_TOKENS_247>|",
|
1734 |
+
"lstrip": false,
|
1735 |
+
"normalized": false,
|
1736 |
+
"rstrip": false,
|
1737 |
+
"single_word": false
|
1738 |
+
},
|
1739 |
+
{
|
1740 |
+
"content": "|<EXTRA_TOKENS_248>|",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false
|
1745 |
+
},
|
1746 |
+
{
|
1747 |
+
"content": "|<EXTRA_TOKENS_249>|",
|
1748 |
+
"lstrip": false,
|
1749 |
+
"normalized": false,
|
1750 |
+
"rstrip": false,
|
1751 |
+
"single_word": false
|
1752 |
+
},
|
1753 |
+
{
|
1754 |
+
"content": "|<EXTRA_TOKENS_250>|",
|
1755 |
+
"lstrip": false,
|
1756 |
+
"normalized": false,
|
1757 |
+
"rstrip": false,
|
1758 |
+
"single_word": false
|
1759 |
+
},
|
1760 |
+
{
|
1761 |
+
"content": "|<EXTRA_TOKENS_251>|",
|
1762 |
+
"lstrip": false,
|
1763 |
+
"normalized": false,
|
1764 |
+
"rstrip": false,
|
1765 |
+
"single_word": false
|
1766 |
+
},
|
1767 |
+
{
|
1768 |
+
"content": "|<EXTRA_TOKENS_252>|",
|
1769 |
+
"lstrip": false,
|
1770 |
+
"normalized": false,
|
1771 |
+
"rstrip": false,
|
1772 |
+
"single_word": false
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"content": "|<EXTRA_TOKENS_253>|",
|
1776 |
+
"lstrip": false,
|
1777 |
+
"normalized": false,
|
1778 |
+
"rstrip": false,
|
1779 |
+
"single_word": false
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"content": "|<EXTRA_TOKENS_254>|",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"content": "|<EXTRA_TOKENS_255>|",
|
1790 |
+
"lstrip": false,
|
1791 |
+
"normalized": false,
|
1792 |
+
"rstrip": false,
|
1793 |
+
"single_word": false
|
1794 |
+
},
|
1795 |
+
{
|
1796 |
+
"content": "|<EXTRA_TOKENS_256>|",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"content": "|<EXTRA_TOKENS_257>|",
|
1804 |
+
"lstrip": false,
|
1805 |
+
"normalized": false,
|
1806 |
+
"rstrip": false,
|
1807 |
+
"single_word": false
|
1808 |
+
},
|
1809 |
+
{
|
1810 |
+
"content": "|<EXTRA_TOKENS_258>|",
|
1811 |
+
"lstrip": false,
|
1812 |
+
"normalized": false,
|
1813 |
+
"rstrip": false,
|
1814 |
+
"single_word": false
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"content": "|<EXTRA_TOKENS_259>|",
|
1818 |
+
"lstrip": false,
|
1819 |
+
"normalized": false,
|
1820 |
+
"rstrip": false,
|
1821 |
+
"single_word": false
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"content": "|<EXTRA_TOKENS_260>|",
|
1825 |
+
"lstrip": false,
|
1826 |
+
"normalized": false,
|
1827 |
+
"rstrip": false,
|
1828 |
+
"single_word": false
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"content": "|<EXTRA_TOKENS_261>|",
|
1832 |
+
"lstrip": false,
|
1833 |
+
"normalized": false,
|
1834 |
+
"rstrip": false,
|
1835 |
+
"single_word": false
|
1836 |
+
},
|
1837 |
+
{
|
1838 |
+
"content": "|<EXTRA_TOKENS_262>|",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false
|
1843 |
+
},
|
1844 |
+
{
|
1845 |
+
"content": "|<EXTRA_TOKENS_263>|",
|
1846 |
+
"lstrip": false,
|
1847 |
+
"normalized": false,
|
1848 |
+
"rstrip": false,
|
1849 |
+
"single_word": false
|
1850 |
+
},
|
1851 |
+
{
|
1852 |
+
"content": "|<EXTRA_TOKENS_264>|",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"content": "|<EXTRA_TOKENS_265>|",
|
1860 |
+
"lstrip": false,
|
1861 |
+
"normalized": false,
|
1862 |
+
"rstrip": false,
|
1863 |
+
"single_word": false
|
1864 |
+
},
|
1865 |
+
{
|
1866 |
+
"content": "|<EXTRA_TOKENS_266>|",
|
1867 |
+
"lstrip": false,
|
1868 |
+
"normalized": false,
|
1869 |
+
"rstrip": false,
|
1870 |
+
"single_word": false
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"content": "|<EXTRA_TOKENS_267>|",
|
1874 |
+
"lstrip": false,
|
1875 |
+
"normalized": false,
|
1876 |
+
"rstrip": false,
|
1877 |
+
"single_word": false
|
1878 |
+
},
|
1879 |
+
{
|
1880 |
+
"content": "|<EXTRA_TOKENS_268>|",
|
1881 |
+
"lstrip": false,
|
1882 |
+
"normalized": false,
|
1883 |
+
"rstrip": false,
|
1884 |
+
"single_word": false
|
1885 |
+
},
|
1886 |
+
{
|
1887 |
+
"content": "<im_start>",
|
1888 |
+
"lstrip": false,
|
1889 |
+
"normalized": false,
|
1890 |
+
"rstrip": false,
|
1891 |
+
"single_word": false
|
1892 |
+
},
|
1893 |
+
{
|
1894 |
+
"content": "<im_end>",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"content": "<im_patch>",
|
1902 |
+
"lstrip": false,
|
1903 |
+
"normalized": false,
|
1904 |
+
"rstrip": false,
|
1905 |
+
"single_word": false
|
1906 |
+
},
|
1907 |
+
{
|
1908 |
+
"content": "<im_col>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false
|
1913 |
+
},
|
1914 |
+
{
|
1915 |
+
"content": "<|image|>",
|
1916 |
+
"lstrip": false,
|
1917 |
+
"normalized": false,
|
1918 |
+
"rstrip": false,
|
1919 |
+
"single_word": false
|
1920 |
+
},
|
1921 |
+
{
|
1922 |
+
"content": "<im_low>",
|
1923 |
+
"lstrip": false,
|
1924 |
+
"normalized": false,
|
1925 |
+
"rstrip": false,
|
1926 |
+
"single_word": false
|
1927 |
+
}
|
1928 |
+
],
|
1929 |
+
"bos_token": "<|endoftext|>",
|
1930 |
+
"eos_token": {
|
1931 |
+
"content": "<|endoftext|>",
|
1932 |
+
"lstrip": false,
|
1933 |
+
"normalized": false,
|
1934 |
+
"rstrip": false,
|
1935 |
+
"single_word": false
|
1936 |
+
},
|
1937 |
+
"pad_token": {
|
1938 |
+
"content": "<|endoftext|>",
|
1939 |
+
"lstrip": false,
|
1940 |
+
"normalized": false,
|
1941 |
+
"rstrip": false,
|
1942 |
+
"single_word": false
|
1943 |
+
}
|
1944 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70522ad61c51fe8b137105665e222eea81d787e5603c75641b02ba5480628ad6
|
3 |
+
size 11500226
|
tokenizer_config.json
ADDED
@@ -0,0 +1,3713 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<DEPTH_START>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": true,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "<DEPTH_END>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": true,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<DEPTH_0>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": true,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "<DEPTH_1>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": true,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"151669": {
|
214 |
+
"content": "<DEPTH_2>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": true,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"151670": {
|
222 |
+
"content": "<DEPTH_3>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": true,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"151671": {
|
230 |
+
"content": "<DEPTH_4>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": true,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"151672": {
|
238 |
+
"content": "<DEPTH_5>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": true,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"151673": {
|
246 |
+
"content": "<DEPTH_6>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": true,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"151674": {
|
254 |
+
"content": "<DEPTH_7>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": true,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"151675": {
|
262 |
+
"content": "<DEPTH_8>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": true,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"151676": {
|
270 |
+
"content": "<DEPTH_9>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": true,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"151677": {
|
278 |
+
"content": "<DEPTH_10>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": true,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"151678": {
|
286 |
+
"content": "<DEPTH_11>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": true,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"151679": {
|
294 |
+
"content": "<DEPTH_12>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": true,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"151680": {
|
302 |
+
"content": "<DEPTH_13>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": true,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"151681": {
|
310 |
+
"content": "<DEPTH_14>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": true,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"151682": {
|
318 |
+
"content": "<DEPTH_15>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": true,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"151683": {
|
326 |
+
"content": "<DEPTH_16>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": true,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"151684": {
|
334 |
+
"content": "<DEPTH_17>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": true,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"151685": {
|
342 |
+
"content": "<DEPTH_18>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": true,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"151686": {
|
350 |
+
"content": "<DEPTH_19>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": true,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"151687": {
|
358 |
+
"content": "<DEPTH_20>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": true,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"151688": {
|
366 |
+
"content": "<DEPTH_21>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": true,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"151689": {
|
374 |
+
"content": "<DEPTH_22>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": true,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"151690": {
|
382 |
+
"content": "<DEPTH_23>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": true,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"151691": {
|
390 |
+
"content": "<DEPTH_24>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": true,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"151692": {
|
398 |
+
"content": "<DEPTH_25>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": true,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"151693": {
|
406 |
+
"content": "<DEPTH_26>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": true,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"151694": {
|
414 |
+
"content": "<DEPTH_27>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": true,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"151695": {
|
422 |
+
"content": "<DEPTH_28>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": true,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"151696": {
|
430 |
+
"content": "<DEPTH_29>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": true,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"151697": {
|
438 |
+
"content": "<DEPTH_30>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": true,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"151698": {
|
446 |
+
"content": "<DEPTH_31>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": true,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"151699": {
|
454 |
+
"content": "<DEPTH_32>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": true,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"151700": {
|
462 |
+
"content": "<DEPTH_33>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": true,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"151701": {
|
470 |
+
"content": "<DEPTH_34>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": true,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"151702": {
|
478 |
+
"content": "<DEPTH_35>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": true,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"151703": {
|
486 |
+
"content": "<DEPTH_36>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": true,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"151704": {
|
494 |
+
"content": "<DEPTH_37>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": true,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"151705": {
|
502 |
+
"content": "<DEPTH_38>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": true,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"151706": {
|
510 |
+
"content": "<DEPTH_39>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": true,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"151707": {
|
518 |
+
"content": "<DEPTH_40>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": true,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"151708": {
|
526 |
+
"content": "<DEPTH_41>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": true,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"151709": {
|
534 |
+
"content": "<DEPTH_42>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": true,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"151710": {
|
542 |
+
"content": "<DEPTH_43>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": true,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"151711": {
|
550 |
+
"content": "<DEPTH_44>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": true,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"151712": {
|
558 |
+
"content": "<DEPTH_45>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": true,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"151713": {
|
566 |
+
"content": "<DEPTH_46>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": true,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"151714": {
|
574 |
+
"content": "<DEPTH_47>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": true,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"151715": {
|
582 |
+
"content": "<DEPTH_48>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": true,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"151716": {
|
590 |
+
"content": "<DEPTH_49>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": true,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"151717": {
|
598 |
+
"content": "<DEPTH_50>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": true,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"151718": {
|
606 |
+
"content": "<DEPTH_51>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": true,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"151719": {
|
614 |
+
"content": "<DEPTH_52>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": true,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"151720": {
|
622 |
+
"content": "<DEPTH_53>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": true,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"151721": {
|
630 |
+
"content": "<DEPTH_54>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": true,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"151722": {
|
638 |
+
"content": "<DEPTH_55>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": true,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"151723": {
|
646 |
+
"content": "<DEPTH_56>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": true,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"151724": {
|
654 |
+
"content": "<DEPTH_57>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": true,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"151725": {
|
662 |
+
"content": "<DEPTH_58>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": true,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"151726": {
|
670 |
+
"content": "<DEPTH_59>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": true,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"151727": {
|
678 |
+
"content": "<DEPTH_60>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": true,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"151728": {
|
686 |
+
"content": "<DEPTH_61>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": true,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"151729": {
|
694 |
+
"content": "<DEPTH_62>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": true,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"151730": {
|
702 |
+
"content": "<DEPTH_63>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": true,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"151731": {
|
710 |
+
"content": "<DEPTH_64>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": true,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"151732": {
|
718 |
+
"content": "<DEPTH_65>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": true,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"151733": {
|
726 |
+
"content": "<DEPTH_66>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": true,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"151734": {
|
734 |
+
"content": "<DEPTH_67>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": true,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"151735": {
|
742 |
+
"content": "<DEPTH_68>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": true,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"151736": {
|
750 |
+
"content": "<DEPTH_69>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": true,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"151737": {
|
758 |
+
"content": "<DEPTH_70>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": true,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"151738": {
|
766 |
+
"content": "<DEPTH_71>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": true,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"151739": {
|
774 |
+
"content": "<DEPTH_72>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": true,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"151740": {
|
782 |
+
"content": "<DEPTH_73>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": true,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"151741": {
|
790 |
+
"content": "<DEPTH_74>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": true,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"151742": {
|
798 |
+
"content": "<DEPTH_75>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": true,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"151743": {
|
806 |
+
"content": "<DEPTH_76>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": true,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"151744": {
|
814 |
+
"content": "<DEPTH_77>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": true,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"151745": {
|
822 |
+
"content": "<DEPTH_78>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": true,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"151746": {
|
830 |
+
"content": "<DEPTH_79>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": true,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"151747": {
|
838 |
+
"content": "<DEPTH_80>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": true,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"151748": {
|
846 |
+
"content": "<DEPTH_81>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": true,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"151749": {
|
854 |
+
"content": "<DEPTH_82>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": true,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": false
|
860 |
+
},
|
861 |
+
"151750": {
|
862 |
+
"content": "<DEPTH_83>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": true,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": false
|
868 |
+
},
|
869 |
+
"151751": {
|
870 |
+
"content": "<DEPTH_84>",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": true,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"151752": {
|
878 |
+
"content": "<DEPTH_85>",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": true,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"151753": {
|
886 |
+
"content": "<DEPTH_86>",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": true,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"151754": {
|
894 |
+
"content": "<DEPTH_87>",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": true,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"151755": {
|
902 |
+
"content": "<DEPTH_88>",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": true,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"151756": {
|
910 |
+
"content": "<DEPTH_89>",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": true,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"151757": {
|
918 |
+
"content": "<DEPTH_90>",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": true,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"151758": {
|
926 |
+
"content": "<DEPTH_91>",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": true,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"151759": {
|
934 |
+
"content": "<DEPTH_92>",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": true,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"151760": {
|
942 |
+
"content": "<DEPTH_93>",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": true,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"151761": {
|
950 |
+
"content": "<DEPTH_94>",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": true,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"151762": {
|
958 |
+
"content": "<DEPTH_95>",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": true,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"151763": {
|
966 |
+
"content": "<DEPTH_96>",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": true,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"151764": {
|
974 |
+
"content": "<DEPTH_97>",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": true,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"151765": {
|
982 |
+
"content": "<DEPTH_98>",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": true,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"151766": {
|
990 |
+
"content": "<DEPTH_99>",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": true,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"151767": {
|
998 |
+
"content": "<DEPTH_100>",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": true,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"151768": {
|
1006 |
+
"content": "<DEPTH_101>",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": true,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"151769": {
|
1014 |
+
"content": "<DEPTH_102>",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": true,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"151770": {
|
1022 |
+
"content": "<DEPTH_103>",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": true,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"151771": {
|
1030 |
+
"content": "<DEPTH_104>",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": true,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"151772": {
|
1038 |
+
"content": "<DEPTH_105>",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": true,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"151773": {
|
1046 |
+
"content": "<DEPTH_106>",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": true,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"151774": {
|
1054 |
+
"content": "<DEPTH_107>",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": true,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"151775": {
|
1062 |
+
"content": "<DEPTH_108>",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": true,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"151776": {
|
1070 |
+
"content": "<DEPTH_109>",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": true,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"151777": {
|
1078 |
+
"content": "<DEPTH_110>",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": true,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"151778": {
|
1086 |
+
"content": "<DEPTH_111>",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": true,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"151779": {
|
1094 |
+
"content": "<DEPTH_112>",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": true,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"151780": {
|
1102 |
+
"content": "<DEPTH_113>",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": true,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"151781": {
|
1110 |
+
"content": "<DEPTH_114>",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": true,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"151782": {
|
1118 |
+
"content": "<DEPTH_115>",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": true,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"151783": {
|
1126 |
+
"content": "<DEPTH_116>",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": true,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"151784": {
|
1134 |
+
"content": "<DEPTH_117>",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": true,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"151785": {
|
1142 |
+
"content": "<DEPTH_118>",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": true,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"151786": {
|
1150 |
+
"content": "<DEPTH_119>",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": true,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"151787": {
|
1158 |
+
"content": "<DEPTH_120>",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": true,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"151788": {
|
1166 |
+
"content": "<DEPTH_121>",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": true,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"151789": {
|
1174 |
+
"content": "<DEPTH_122>",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": true,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"151790": {
|
1182 |
+
"content": "<DEPTH_123>",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": true,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"151791": {
|
1190 |
+
"content": "<DEPTH_124>",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": true,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"151792": {
|
1198 |
+
"content": "<DEPTH_125>",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": true,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"151793": {
|
1206 |
+
"content": "<DEPTH_126>",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": true,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151794": {
|
1214 |
+
"content": "<DEPTH_127>",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": true,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"151795": {
|
1222 |
+
"content": "|<EXTRA_TOKENS_0>|",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": true
|
1228 |
+
},
|
1229 |
+
"151796": {
|
1230 |
+
"content": "|<EXTRA_TOKENS_1>|",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": true
|
1236 |
+
},
|
1237 |
+
"151797": {
|
1238 |
+
"content": "|<EXTRA_TOKENS_2>|",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": true
|
1244 |
+
},
|
1245 |
+
"151798": {
|
1246 |
+
"content": "|<EXTRA_TOKENS_3>|",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": true
|
1252 |
+
},
|
1253 |
+
"151799": {
|
1254 |
+
"content": "|<EXTRA_TOKENS_4>|",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": true
|
1260 |
+
},
|
1261 |
+
"151800": {
|
1262 |
+
"content": "|<EXTRA_TOKENS_5>|",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": true
|
1268 |
+
},
|
1269 |
+
"151801": {
|
1270 |
+
"content": "|<EXTRA_TOKENS_6>|",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": true
|
1276 |
+
},
|
1277 |
+
"151802": {
|
1278 |
+
"content": "|<EXTRA_TOKENS_7>|",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": true
|
1284 |
+
},
|
1285 |
+
"151803": {
|
1286 |
+
"content": "|<EXTRA_TOKENS_8>|",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": true
|
1292 |
+
},
|
1293 |
+
"151804": {
|
1294 |
+
"content": "|<EXTRA_TOKENS_9>|",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": true
|
1300 |
+
},
|
1301 |
+
"151805": {
|
1302 |
+
"content": "|<EXTRA_TOKENS_10>|",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": true
|
1308 |
+
},
|
1309 |
+
"151806": {
|
1310 |
+
"content": "|<EXTRA_TOKENS_11>|",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": true
|
1316 |
+
},
|
1317 |
+
"151807": {
|
1318 |
+
"content": "|<EXTRA_TOKENS_12>|",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": true
|
1324 |
+
},
|
1325 |
+
"151808": {
|
1326 |
+
"content": "|<EXTRA_TOKENS_13>|",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": true
|
1332 |
+
},
|
1333 |
+
"151809": {
|
1334 |
+
"content": "|<EXTRA_TOKENS_14>|",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": true
|
1340 |
+
},
|
1341 |
+
"151810": {
|
1342 |
+
"content": "|<EXTRA_TOKENS_15>|",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": true
|
1348 |
+
},
|
1349 |
+
"151811": {
|
1350 |
+
"content": "|<EXTRA_TOKENS_16>|",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": true
|
1356 |
+
},
|
1357 |
+
"151812": {
|
1358 |
+
"content": "|<EXTRA_TOKENS_17>|",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": true
|
1364 |
+
},
|
1365 |
+
"151813": {
|
1366 |
+
"content": "|<EXTRA_TOKENS_18>|",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": true
|
1372 |
+
},
|
1373 |
+
"151814": {
|
1374 |
+
"content": "|<EXTRA_TOKENS_19>|",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": true
|
1380 |
+
},
|
1381 |
+
"151815": {
|
1382 |
+
"content": "|<EXTRA_TOKENS_20>|",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": true
|
1388 |
+
},
|
1389 |
+
"151816": {
|
1390 |
+
"content": "|<EXTRA_TOKENS_21>|",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": true
|
1396 |
+
},
|
1397 |
+
"151817": {
|
1398 |
+
"content": "|<EXTRA_TOKENS_22>|",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": true
|
1404 |
+
},
|
1405 |
+
"151818": {
|
1406 |
+
"content": "|<EXTRA_TOKENS_23>|",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": true
|
1412 |
+
},
|
1413 |
+
"151819": {
|
1414 |
+
"content": "|<EXTRA_TOKENS_24>|",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": true
|
1420 |
+
},
|
1421 |
+
"151820": {
|
1422 |
+
"content": "|<EXTRA_TOKENS_25>|",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": true
|
1428 |
+
},
|
1429 |
+
"151821": {
|
1430 |
+
"content": "|<EXTRA_TOKENS_26>|",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": true
|
1436 |
+
},
|
1437 |
+
"151822": {
|
1438 |
+
"content": "|<EXTRA_TOKENS_27>|",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": true
|
1444 |
+
},
|
1445 |
+
"151823": {
|
1446 |
+
"content": "|<EXTRA_TOKENS_28>|",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": true
|
1452 |
+
},
|
1453 |
+
"151824": {
|
1454 |
+
"content": "|<EXTRA_TOKENS_29>|",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": true
|
1460 |
+
},
|
1461 |
+
"151825": {
|
1462 |
+
"content": "|<EXTRA_TOKENS_30>|",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": true
|
1468 |
+
},
|
1469 |
+
"151826": {
|
1470 |
+
"content": "|<EXTRA_TOKENS_31>|",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": true
|
1476 |
+
},
|
1477 |
+
"151827": {
|
1478 |
+
"content": "|<EXTRA_TOKENS_32>|",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": true
|
1484 |
+
},
|
1485 |
+
"151828": {
|
1486 |
+
"content": "|<EXTRA_TOKENS_33>|",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": true
|
1492 |
+
},
|
1493 |
+
"151829": {
|
1494 |
+
"content": "|<EXTRA_TOKENS_34>|",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": true
|
1500 |
+
},
|
1501 |
+
"151830": {
|
1502 |
+
"content": "|<EXTRA_TOKENS_35>|",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": true
|
1508 |
+
},
|
1509 |
+
"151831": {
|
1510 |
+
"content": "|<EXTRA_TOKENS_36>|",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": true
|
1516 |
+
},
|
1517 |
+
"151832": {
|
1518 |
+
"content": "|<EXTRA_TOKENS_37>|",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": true
|
1524 |
+
},
|
1525 |
+
"151833": {
|
1526 |
+
"content": "|<EXTRA_TOKENS_38>|",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": true
|
1532 |
+
},
|
1533 |
+
"151834": {
|
1534 |
+
"content": "|<EXTRA_TOKENS_39>|",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": true
|
1540 |
+
},
|
1541 |
+
"151835": {
|
1542 |
+
"content": "|<EXTRA_TOKENS_40>|",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": true
|
1548 |
+
},
|
1549 |
+
"151836": {
|
1550 |
+
"content": "|<EXTRA_TOKENS_41>|",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": true
|
1556 |
+
},
|
1557 |
+
"151837": {
|
1558 |
+
"content": "|<EXTRA_TOKENS_42>|",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": true
|
1564 |
+
},
|
1565 |
+
"151838": {
|
1566 |
+
"content": "|<EXTRA_TOKENS_43>|",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": true
|
1572 |
+
},
|
1573 |
+
"151839": {
|
1574 |
+
"content": "|<EXTRA_TOKENS_44>|",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": true
|
1580 |
+
},
|
1581 |
+
"151840": {
|
1582 |
+
"content": "|<EXTRA_TOKENS_45>|",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": true
|
1588 |
+
},
|
1589 |
+
"151841": {
|
1590 |
+
"content": "|<EXTRA_TOKENS_46>|",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": true
|
1596 |
+
},
|
1597 |
+
"151842": {
|
1598 |
+
"content": "|<EXTRA_TOKENS_47>|",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": true
|
1604 |
+
},
|
1605 |
+
"151843": {
|
1606 |
+
"content": "|<EXTRA_TOKENS_48>|",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": true
|
1612 |
+
},
|
1613 |
+
"151844": {
|
1614 |
+
"content": "|<EXTRA_TOKENS_49>|",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": true
|
1620 |
+
},
|
1621 |
+
"151845": {
|
1622 |
+
"content": "|<EXTRA_TOKENS_50>|",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": true
|
1628 |
+
},
|
1629 |
+
"151846": {
|
1630 |
+
"content": "|<EXTRA_TOKENS_51>|",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": true
|
1636 |
+
},
|
1637 |
+
"151847": {
|
1638 |
+
"content": "|<EXTRA_TOKENS_52>|",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": true
|
1644 |
+
},
|
1645 |
+
"151848": {
|
1646 |
+
"content": "|<EXTRA_TOKENS_53>|",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": true
|
1652 |
+
},
|
1653 |
+
"151849": {
|
1654 |
+
"content": "|<EXTRA_TOKENS_54>|",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": true
|
1660 |
+
},
|
1661 |
+
"151850": {
|
1662 |
+
"content": "|<EXTRA_TOKENS_55>|",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": true
|
1668 |
+
},
|
1669 |
+
"151851": {
|
1670 |
+
"content": "|<EXTRA_TOKENS_56>|",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": true
|
1676 |
+
},
|
1677 |
+
"151852": {
|
1678 |
+
"content": "|<EXTRA_TOKENS_57>|",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": true
|
1684 |
+
},
|
1685 |
+
"151853": {
|
1686 |
+
"content": "|<EXTRA_TOKENS_58>|",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": true
|
1692 |
+
},
|
1693 |
+
"151854": {
|
1694 |
+
"content": "|<EXTRA_TOKENS_59>|",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": true
|
1700 |
+
},
|
1701 |
+
"151855": {
|
1702 |
+
"content": "|<EXTRA_TOKENS_60>|",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": true
|
1708 |
+
},
|
1709 |
+
"151856": {
|
1710 |
+
"content": "|<EXTRA_TOKENS_61>|",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": true
|
1716 |
+
},
|
1717 |
+
"151857": {
|
1718 |
+
"content": "|<EXTRA_TOKENS_62>|",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": true
|
1724 |
+
},
|
1725 |
+
"151858": {
|
1726 |
+
"content": "|<EXTRA_TOKENS_63>|",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": true
|
1732 |
+
},
|
1733 |
+
"151859": {
|
1734 |
+
"content": "|<EXTRA_TOKENS_64>|",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": true
|
1740 |
+
},
|
1741 |
+
"151860": {
|
1742 |
+
"content": "|<EXTRA_TOKENS_65>|",
|
1743 |
+
"lstrip": false,
|
1744 |
+
"normalized": false,
|
1745 |
+
"rstrip": false,
|
1746 |
+
"single_word": false,
|
1747 |
+
"special": true
|
1748 |
+
},
|
1749 |
+
"151861": {
|
1750 |
+
"content": "|<EXTRA_TOKENS_66>|",
|
1751 |
+
"lstrip": false,
|
1752 |
+
"normalized": false,
|
1753 |
+
"rstrip": false,
|
1754 |
+
"single_word": false,
|
1755 |
+
"special": true
|
1756 |
+
},
|
1757 |
+
"151862": {
|
1758 |
+
"content": "|<EXTRA_TOKENS_67>|",
|
1759 |
+
"lstrip": false,
|
1760 |
+
"normalized": false,
|
1761 |
+
"rstrip": false,
|
1762 |
+
"single_word": false,
|
1763 |
+
"special": true
|
1764 |
+
},
|
1765 |
+
"151863": {
|
1766 |
+
"content": "|<EXTRA_TOKENS_68>|",
|
1767 |
+
"lstrip": false,
|
1768 |
+
"normalized": false,
|
1769 |
+
"rstrip": false,
|
1770 |
+
"single_word": false,
|
1771 |
+
"special": true
|
1772 |
+
},
|
1773 |
+
"151864": {
|
1774 |
+
"content": "|<EXTRA_TOKENS_69>|",
|
1775 |
+
"lstrip": false,
|
1776 |
+
"normalized": false,
|
1777 |
+
"rstrip": false,
|
1778 |
+
"single_word": false,
|
1779 |
+
"special": true
|
1780 |
+
},
|
1781 |
+
"151865": {
|
1782 |
+
"content": "|<EXTRA_TOKENS_70>|",
|
1783 |
+
"lstrip": false,
|
1784 |
+
"normalized": false,
|
1785 |
+
"rstrip": false,
|
1786 |
+
"single_word": false,
|
1787 |
+
"special": true
|
1788 |
+
},
|
1789 |
+
"151866": {
|
1790 |
+
"content": "|<EXTRA_TOKENS_71>|",
|
1791 |
+
"lstrip": false,
|
1792 |
+
"normalized": false,
|
1793 |
+
"rstrip": false,
|
1794 |
+
"single_word": false,
|
1795 |
+
"special": true
|
1796 |
+
},
|
1797 |
+
"151867": {
|
1798 |
+
"content": "|<EXTRA_TOKENS_72>|",
|
1799 |
+
"lstrip": false,
|
1800 |
+
"normalized": false,
|
1801 |
+
"rstrip": false,
|
1802 |
+
"single_word": false,
|
1803 |
+
"special": true
|
1804 |
+
},
|
1805 |
+
"151868": {
|
1806 |
+
"content": "|<EXTRA_TOKENS_73>|",
|
1807 |
+
"lstrip": false,
|
1808 |
+
"normalized": false,
|
1809 |
+
"rstrip": false,
|
1810 |
+
"single_word": false,
|
1811 |
+
"special": true
|
1812 |
+
},
|
1813 |
+
"151869": {
|
1814 |
+
"content": "|<EXTRA_TOKENS_74>|",
|
1815 |
+
"lstrip": false,
|
1816 |
+
"normalized": false,
|
1817 |
+
"rstrip": false,
|
1818 |
+
"single_word": false,
|
1819 |
+
"special": true
|
1820 |
+
},
|
1821 |
+
"151870": {
|
1822 |
+
"content": "|<EXTRA_TOKENS_75>|",
|
1823 |
+
"lstrip": false,
|
1824 |
+
"normalized": false,
|
1825 |
+
"rstrip": false,
|
1826 |
+
"single_word": false,
|
1827 |
+
"special": true
|
1828 |
+
},
|
1829 |
+
"151871": {
|
1830 |
+
"content": "|<EXTRA_TOKENS_76>|",
|
1831 |
+
"lstrip": false,
|
1832 |
+
"normalized": false,
|
1833 |
+
"rstrip": false,
|
1834 |
+
"single_word": false,
|
1835 |
+
"special": true
|
1836 |
+
},
|
1837 |
+
"151872": {
|
1838 |
+
"content": "|<EXTRA_TOKENS_77>|",
|
1839 |
+
"lstrip": false,
|
1840 |
+
"normalized": false,
|
1841 |
+
"rstrip": false,
|
1842 |
+
"single_word": false,
|
1843 |
+
"special": true
|
1844 |
+
},
|
1845 |
+
"151873": {
|
1846 |
+
"content": "|<EXTRA_TOKENS_78>|",
|
1847 |
+
"lstrip": false,
|
1848 |
+
"normalized": false,
|
1849 |
+
"rstrip": false,
|
1850 |
+
"single_word": false,
|
1851 |
+
"special": true
|
1852 |
+
},
|
1853 |
+
"151874": {
|
1854 |
+
"content": "|<EXTRA_TOKENS_79>|",
|
1855 |
+
"lstrip": false,
|
1856 |
+
"normalized": false,
|
1857 |
+
"rstrip": false,
|
1858 |
+
"single_word": false,
|
1859 |
+
"special": true
|
1860 |
+
},
|
1861 |
+
"151875": {
|
1862 |
+
"content": "|<EXTRA_TOKENS_80>|",
|
1863 |
+
"lstrip": false,
|
1864 |
+
"normalized": false,
|
1865 |
+
"rstrip": false,
|
1866 |
+
"single_word": false,
|
1867 |
+
"special": true
|
1868 |
+
},
|
1869 |
+
"151876": {
|
1870 |
+
"content": "|<EXTRA_TOKENS_81>|",
|
1871 |
+
"lstrip": false,
|
1872 |
+
"normalized": false,
|
1873 |
+
"rstrip": false,
|
1874 |
+
"single_word": false,
|
1875 |
+
"special": true
|
1876 |
+
},
|
1877 |
+
"151877": {
|
1878 |
+
"content": "|<EXTRA_TOKENS_82>|",
|
1879 |
+
"lstrip": false,
|
1880 |
+
"normalized": false,
|
1881 |
+
"rstrip": false,
|
1882 |
+
"single_word": false,
|
1883 |
+
"special": true
|
1884 |
+
},
|
1885 |
+
"151878": {
|
1886 |
+
"content": "|<EXTRA_TOKENS_83>|",
|
1887 |
+
"lstrip": false,
|
1888 |
+
"normalized": false,
|
1889 |
+
"rstrip": false,
|
1890 |
+
"single_word": false,
|
1891 |
+
"special": true
|
1892 |
+
},
|
1893 |
+
"151879": {
|
1894 |
+
"content": "|<EXTRA_TOKENS_84>|",
|
1895 |
+
"lstrip": false,
|
1896 |
+
"normalized": false,
|
1897 |
+
"rstrip": false,
|
1898 |
+
"single_word": false,
|
1899 |
+
"special": true
|
1900 |
+
},
|
1901 |
+
"151880": {
|
1902 |
+
"content": "|<EXTRA_TOKENS_85>|",
|
1903 |
+
"lstrip": false,
|
1904 |
+
"normalized": false,
|
1905 |
+
"rstrip": false,
|
1906 |
+
"single_word": false,
|
1907 |
+
"special": true
|
1908 |
+
},
|
1909 |
+
"151881": {
|
1910 |
+
"content": "|<EXTRA_TOKENS_86>|",
|
1911 |
+
"lstrip": false,
|
1912 |
+
"normalized": false,
|
1913 |
+
"rstrip": false,
|
1914 |
+
"single_word": false,
|
1915 |
+
"special": true
|
1916 |
+
},
|
1917 |
+
"151882": {
|
1918 |
+
"content": "|<EXTRA_TOKENS_87>|",
|
1919 |
+
"lstrip": false,
|
1920 |
+
"normalized": false,
|
1921 |
+
"rstrip": false,
|
1922 |
+
"single_word": false,
|
1923 |
+
"special": true
|
1924 |
+
},
|
1925 |
+
"151883": {
|
1926 |
+
"content": "|<EXTRA_TOKENS_88>|",
|
1927 |
+
"lstrip": false,
|
1928 |
+
"normalized": false,
|
1929 |
+
"rstrip": false,
|
1930 |
+
"single_word": false,
|
1931 |
+
"special": true
|
1932 |
+
},
|
1933 |
+
"151884": {
|
1934 |
+
"content": "|<EXTRA_TOKENS_89>|",
|
1935 |
+
"lstrip": false,
|
1936 |
+
"normalized": false,
|
1937 |
+
"rstrip": false,
|
1938 |
+
"single_word": false,
|
1939 |
+
"special": true
|
1940 |
+
},
|
1941 |
+
"151885": {
|
1942 |
+
"content": "|<EXTRA_TOKENS_90>|",
|
1943 |
+
"lstrip": false,
|
1944 |
+
"normalized": false,
|
1945 |
+
"rstrip": false,
|
1946 |
+
"single_word": false,
|
1947 |
+
"special": true
|
1948 |
+
},
|
1949 |
+
"151886": {
|
1950 |
+
"content": "|<EXTRA_TOKENS_91>|",
|
1951 |
+
"lstrip": false,
|
1952 |
+
"normalized": false,
|
1953 |
+
"rstrip": false,
|
1954 |
+
"single_word": false,
|
1955 |
+
"special": true
|
1956 |
+
},
|
1957 |
+
"151887": {
|
1958 |
+
"content": "|<EXTRA_TOKENS_92>|",
|
1959 |
+
"lstrip": false,
|
1960 |
+
"normalized": false,
|
1961 |
+
"rstrip": false,
|
1962 |
+
"single_word": false,
|
1963 |
+
"special": true
|
1964 |
+
},
|
1965 |
+
"151888": {
|
1966 |
+
"content": "|<EXTRA_TOKENS_93>|",
|
1967 |
+
"lstrip": false,
|
1968 |
+
"normalized": false,
|
1969 |
+
"rstrip": false,
|
1970 |
+
"single_word": false,
|
1971 |
+
"special": true
|
1972 |
+
},
|
1973 |
+
"151889": {
|
1974 |
+
"content": "|<EXTRA_TOKENS_94>|",
|
1975 |
+
"lstrip": false,
|
1976 |
+
"normalized": false,
|
1977 |
+
"rstrip": false,
|
1978 |
+
"single_word": false,
|
1979 |
+
"special": true
|
1980 |
+
},
|
1981 |
+
"151890": {
|
1982 |
+
"content": "|<EXTRA_TOKENS_95>|",
|
1983 |
+
"lstrip": false,
|
1984 |
+
"normalized": false,
|
1985 |
+
"rstrip": false,
|
1986 |
+
"single_word": false,
|
1987 |
+
"special": true
|
1988 |
+
},
|
1989 |
+
"151891": {
|
1990 |
+
"content": "|<EXTRA_TOKENS_96>|",
|
1991 |
+
"lstrip": false,
|
1992 |
+
"normalized": false,
|
1993 |
+
"rstrip": false,
|
1994 |
+
"single_word": false,
|
1995 |
+
"special": true
|
1996 |
+
},
|
1997 |
+
"151892": {
|
1998 |
+
"content": "|<EXTRA_TOKENS_97>|",
|
1999 |
+
"lstrip": false,
|
2000 |
+
"normalized": false,
|
2001 |
+
"rstrip": false,
|
2002 |
+
"single_word": false,
|
2003 |
+
"special": true
|
2004 |
+
},
|
2005 |
+
"151893": {
|
2006 |
+
"content": "|<EXTRA_TOKENS_98>|",
|
2007 |
+
"lstrip": false,
|
2008 |
+
"normalized": false,
|
2009 |
+
"rstrip": false,
|
2010 |
+
"single_word": false,
|
2011 |
+
"special": true
|
2012 |
+
},
|
2013 |
+
"151894": {
|
2014 |
+
"content": "|<EXTRA_TOKENS_99>|",
|
2015 |
+
"lstrip": false,
|
2016 |
+
"normalized": false,
|
2017 |
+
"rstrip": false,
|
2018 |
+
"single_word": false,
|
2019 |
+
"special": true
|
2020 |
+
},
|
2021 |
+
"151895": {
|
2022 |
+
"content": "|<EXTRA_TOKENS_100>|",
|
2023 |
+
"lstrip": false,
|
2024 |
+
"normalized": false,
|
2025 |
+
"rstrip": false,
|
2026 |
+
"single_word": false,
|
2027 |
+
"special": true
|
2028 |
+
},
|
2029 |
+
"151896": {
|
2030 |
+
"content": "|<EXTRA_TOKENS_101>|",
|
2031 |
+
"lstrip": false,
|
2032 |
+
"normalized": false,
|
2033 |
+
"rstrip": false,
|
2034 |
+
"single_word": false,
|
2035 |
+
"special": true
|
2036 |
+
},
|
2037 |
+
"151897": {
|
2038 |
+
"content": "|<EXTRA_TOKENS_102>|",
|
2039 |
+
"lstrip": false,
|
2040 |
+
"normalized": false,
|
2041 |
+
"rstrip": false,
|
2042 |
+
"single_word": false,
|
2043 |
+
"special": true
|
2044 |
+
},
|
2045 |
+
"151898": {
|
2046 |
+
"content": "|<EXTRA_TOKENS_103>|",
|
2047 |
+
"lstrip": false,
|
2048 |
+
"normalized": false,
|
2049 |
+
"rstrip": false,
|
2050 |
+
"single_word": false,
|
2051 |
+
"special": true
|
2052 |
+
},
|
2053 |
+
"151899": {
|
2054 |
+
"content": "|<EXTRA_TOKENS_104>|",
|
2055 |
+
"lstrip": false,
|
2056 |
+
"normalized": false,
|
2057 |
+
"rstrip": false,
|
2058 |
+
"single_word": false,
|
2059 |
+
"special": true
|
2060 |
+
},
|
2061 |
+
"151900": {
|
2062 |
+
"content": "|<EXTRA_TOKENS_105>|",
|
2063 |
+
"lstrip": false,
|
2064 |
+
"normalized": false,
|
2065 |
+
"rstrip": false,
|
2066 |
+
"single_word": false,
|
2067 |
+
"special": true
|
2068 |
+
},
|
2069 |
+
"151901": {
|
2070 |
+
"content": "|<EXTRA_TOKENS_106>|",
|
2071 |
+
"lstrip": false,
|
2072 |
+
"normalized": false,
|
2073 |
+
"rstrip": false,
|
2074 |
+
"single_word": false,
|
2075 |
+
"special": true
|
2076 |
+
},
|
2077 |
+
"151902": {
|
2078 |
+
"content": "|<EXTRA_TOKENS_107>|",
|
2079 |
+
"lstrip": false,
|
2080 |
+
"normalized": false,
|
2081 |
+
"rstrip": false,
|
2082 |
+
"single_word": false,
|
2083 |
+
"special": true
|
2084 |
+
},
|
2085 |
+
"151903": {
|
2086 |
+
"content": "|<EXTRA_TOKENS_108>|",
|
2087 |
+
"lstrip": false,
|
2088 |
+
"normalized": false,
|
2089 |
+
"rstrip": false,
|
2090 |
+
"single_word": false,
|
2091 |
+
"special": true
|
2092 |
+
},
|
2093 |
+
"151904": {
|
2094 |
+
"content": "|<EXTRA_TOKENS_109>|",
|
2095 |
+
"lstrip": false,
|
2096 |
+
"normalized": false,
|
2097 |
+
"rstrip": false,
|
2098 |
+
"single_word": false,
|
2099 |
+
"special": true
|
2100 |
+
},
|
2101 |
+
"151905": {
|
2102 |
+
"content": "|<EXTRA_TOKENS_110>|",
|
2103 |
+
"lstrip": false,
|
2104 |
+
"normalized": false,
|
2105 |
+
"rstrip": false,
|
2106 |
+
"single_word": false,
|
2107 |
+
"special": true
|
2108 |
+
},
|
2109 |
+
"151906": {
|
2110 |
+
"content": "|<EXTRA_TOKENS_111>|",
|
2111 |
+
"lstrip": false,
|
2112 |
+
"normalized": false,
|
2113 |
+
"rstrip": false,
|
2114 |
+
"single_word": false,
|
2115 |
+
"special": true
|
2116 |
+
},
|
2117 |
+
"151907": {
|
2118 |
+
"content": "|<EXTRA_TOKENS_112>|",
|
2119 |
+
"lstrip": false,
|
2120 |
+
"normalized": false,
|
2121 |
+
"rstrip": false,
|
2122 |
+
"single_word": false,
|
2123 |
+
"special": true
|
2124 |
+
},
|
2125 |
+
"151908": {
|
2126 |
+
"content": "|<EXTRA_TOKENS_113>|",
|
2127 |
+
"lstrip": false,
|
2128 |
+
"normalized": false,
|
2129 |
+
"rstrip": false,
|
2130 |
+
"single_word": false,
|
2131 |
+
"special": true
|
2132 |
+
},
|
2133 |
+
"151909": {
|
2134 |
+
"content": "|<EXTRA_TOKENS_114>|",
|
2135 |
+
"lstrip": false,
|
2136 |
+
"normalized": false,
|
2137 |
+
"rstrip": false,
|
2138 |
+
"single_word": false,
|
2139 |
+
"special": true
|
2140 |
+
},
|
2141 |
+
"151910": {
|
2142 |
+
"content": "|<EXTRA_TOKENS_115>|",
|
2143 |
+
"lstrip": false,
|
2144 |
+
"normalized": false,
|
2145 |
+
"rstrip": false,
|
2146 |
+
"single_word": false,
|
2147 |
+
"special": true
|
2148 |
+
},
|
2149 |
+
"151911": {
|
2150 |
+
"content": "|<EXTRA_TOKENS_116>|",
|
2151 |
+
"lstrip": false,
|
2152 |
+
"normalized": false,
|
2153 |
+
"rstrip": false,
|
2154 |
+
"single_word": false,
|
2155 |
+
"special": true
|
2156 |
+
},
|
2157 |
+
"151912": {
|
2158 |
+
"content": "|<EXTRA_TOKENS_117>|",
|
2159 |
+
"lstrip": false,
|
2160 |
+
"normalized": false,
|
2161 |
+
"rstrip": false,
|
2162 |
+
"single_word": false,
|
2163 |
+
"special": true
|
2164 |
+
},
|
2165 |
+
"151913": {
|
2166 |
+
"content": "|<EXTRA_TOKENS_118>|",
|
2167 |
+
"lstrip": false,
|
2168 |
+
"normalized": false,
|
2169 |
+
"rstrip": false,
|
2170 |
+
"single_word": false,
|
2171 |
+
"special": true
|
2172 |
+
},
|
2173 |
+
"151914": {
|
2174 |
+
"content": "|<EXTRA_TOKENS_119>|",
|
2175 |
+
"lstrip": false,
|
2176 |
+
"normalized": false,
|
2177 |
+
"rstrip": false,
|
2178 |
+
"single_word": false,
|
2179 |
+
"special": true
|
2180 |
+
},
|
2181 |
+
"151915": {
|
2182 |
+
"content": "|<EXTRA_TOKENS_120>|",
|
2183 |
+
"lstrip": false,
|
2184 |
+
"normalized": false,
|
2185 |
+
"rstrip": false,
|
2186 |
+
"single_word": false,
|
2187 |
+
"special": true
|
2188 |
+
},
|
2189 |
+
"151916": {
|
2190 |
+
"content": "|<EXTRA_TOKENS_121>|",
|
2191 |
+
"lstrip": false,
|
2192 |
+
"normalized": false,
|
2193 |
+
"rstrip": false,
|
2194 |
+
"single_word": false,
|
2195 |
+
"special": true
|
2196 |
+
},
|
2197 |
+
"151917": {
|
2198 |
+
"content": "|<EXTRA_TOKENS_122>|",
|
2199 |
+
"lstrip": false,
|
2200 |
+
"normalized": false,
|
2201 |
+
"rstrip": false,
|
2202 |
+
"single_word": false,
|
2203 |
+
"special": true
|
2204 |
+
},
|
2205 |
+
"151918": {
|
2206 |
+
"content": "|<EXTRA_TOKENS_123>|",
|
2207 |
+
"lstrip": false,
|
2208 |
+
"normalized": false,
|
2209 |
+
"rstrip": false,
|
2210 |
+
"single_word": false,
|
2211 |
+
"special": true
|
2212 |
+
},
|
2213 |
+
"151919": {
|
2214 |
+
"content": "|<EXTRA_TOKENS_124>|",
|
2215 |
+
"lstrip": false,
|
2216 |
+
"normalized": false,
|
2217 |
+
"rstrip": false,
|
2218 |
+
"single_word": false,
|
2219 |
+
"special": true
|
2220 |
+
},
|
2221 |
+
"151920": {
|
2222 |
+
"content": "|<EXTRA_TOKENS_125>|",
|
2223 |
+
"lstrip": false,
|
2224 |
+
"normalized": false,
|
2225 |
+
"rstrip": false,
|
2226 |
+
"single_word": false,
|
2227 |
+
"special": true
|
2228 |
+
},
|
2229 |
+
"151921": {
|
2230 |
+
"content": "|<EXTRA_TOKENS_126>|",
|
2231 |
+
"lstrip": false,
|
2232 |
+
"normalized": false,
|
2233 |
+
"rstrip": false,
|
2234 |
+
"single_word": false,
|
2235 |
+
"special": true
|
2236 |
+
},
|
2237 |
+
"151922": {
|
2238 |
+
"content": "|<EXTRA_TOKENS_127>|",
|
2239 |
+
"lstrip": false,
|
2240 |
+
"normalized": false,
|
2241 |
+
"rstrip": false,
|
2242 |
+
"single_word": false,
|
2243 |
+
"special": true
|
2244 |
+
},
|
2245 |
+
"151923": {
|
2246 |
+
"content": "|<EXTRA_TOKENS_128>|",
|
2247 |
+
"lstrip": false,
|
2248 |
+
"normalized": false,
|
2249 |
+
"rstrip": false,
|
2250 |
+
"single_word": false,
|
2251 |
+
"special": true
|
2252 |
+
},
|
2253 |
+
"151924": {
|
2254 |
+
"content": "|<EXTRA_TOKENS_129>|",
|
2255 |
+
"lstrip": false,
|
2256 |
+
"normalized": false,
|
2257 |
+
"rstrip": false,
|
2258 |
+
"single_word": false,
|
2259 |
+
"special": true
|
2260 |
+
},
|
2261 |
+
"151925": {
|
2262 |
+
"content": "|<EXTRA_TOKENS_130>|",
|
2263 |
+
"lstrip": false,
|
2264 |
+
"normalized": false,
|
2265 |
+
"rstrip": false,
|
2266 |
+
"single_word": false,
|
2267 |
+
"special": true
|
2268 |
+
},
|
2269 |
+
"151926": {
|
2270 |
+
"content": "|<EXTRA_TOKENS_131>|",
|
2271 |
+
"lstrip": false,
|
2272 |
+
"normalized": false,
|
2273 |
+
"rstrip": false,
|
2274 |
+
"single_word": false,
|
2275 |
+
"special": true
|
2276 |
+
},
|
2277 |
+
"151927": {
|
2278 |
+
"content": "|<EXTRA_TOKENS_132>|",
|
2279 |
+
"lstrip": false,
|
2280 |
+
"normalized": false,
|
2281 |
+
"rstrip": false,
|
2282 |
+
"single_word": false,
|
2283 |
+
"special": true
|
2284 |
+
},
|
2285 |
+
"151928": {
|
2286 |
+
"content": "|<EXTRA_TOKENS_133>|",
|
2287 |
+
"lstrip": false,
|
2288 |
+
"normalized": false,
|
2289 |
+
"rstrip": false,
|
2290 |
+
"single_word": false,
|
2291 |
+
"special": true
|
2292 |
+
},
|
2293 |
+
"151929": {
|
2294 |
+
"content": "|<EXTRA_TOKENS_134>|",
|
2295 |
+
"lstrip": false,
|
2296 |
+
"normalized": false,
|
2297 |
+
"rstrip": false,
|
2298 |
+
"single_word": false,
|
2299 |
+
"special": true
|
2300 |
+
},
|
2301 |
+
"151930": {
|
2302 |
+
"content": "|<EXTRA_TOKENS_135>|",
|
2303 |
+
"lstrip": false,
|
2304 |
+
"normalized": false,
|
2305 |
+
"rstrip": false,
|
2306 |
+
"single_word": false,
|
2307 |
+
"special": true
|
2308 |
+
},
|
2309 |
+
"151931": {
|
2310 |
+
"content": "|<EXTRA_TOKENS_136>|",
|
2311 |
+
"lstrip": false,
|
2312 |
+
"normalized": false,
|
2313 |
+
"rstrip": false,
|
2314 |
+
"single_word": false,
|
2315 |
+
"special": true
|
2316 |
+
},
|
2317 |
+
"151932": {
|
2318 |
+
"content": "|<EXTRA_TOKENS_137>|",
|
2319 |
+
"lstrip": false,
|
2320 |
+
"normalized": false,
|
2321 |
+
"rstrip": false,
|
2322 |
+
"single_word": false,
|
2323 |
+
"special": true
|
2324 |
+
},
|
2325 |
+
"151933": {
|
2326 |
+
"content": "|<EXTRA_TOKENS_138>|",
|
2327 |
+
"lstrip": false,
|
2328 |
+
"normalized": false,
|
2329 |
+
"rstrip": false,
|
2330 |
+
"single_word": false,
|
2331 |
+
"special": true
|
2332 |
+
},
|
2333 |
+
"151934": {
|
2334 |
+
"content": "|<EXTRA_TOKENS_139>|",
|
2335 |
+
"lstrip": false,
|
2336 |
+
"normalized": false,
|
2337 |
+
"rstrip": false,
|
2338 |
+
"single_word": false,
|
2339 |
+
"special": true
|
2340 |
+
},
|
2341 |
+
"151935": {
|
2342 |
+
"content": "|<EXTRA_TOKENS_140>|",
|
2343 |
+
"lstrip": false,
|
2344 |
+
"normalized": false,
|
2345 |
+
"rstrip": false,
|
2346 |
+
"single_word": false,
|
2347 |
+
"special": true
|
2348 |
+
},
|
2349 |
+
"151936": {
|
2350 |
+
"content": "|<EXTRA_TOKENS_141>|",
|
2351 |
+
"lstrip": false,
|
2352 |
+
"normalized": false,
|
2353 |
+
"rstrip": false,
|
2354 |
+
"single_word": false,
|
2355 |
+
"special": true
|
2356 |
+
},
|
2357 |
+
"151937": {
|
2358 |
+
"content": "|<EXTRA_TOKENS_142>|",
|
2359 |
+
"lstrip": false,
|
2360 |
+
"normalized": false,
|
2361 |
+
"rstrip": false,
|
2362 |
+
"single_word": false,
|
2363 |
+
"special": true
|
2364 |
+
},
|
2365 |
+
"151938": {
|
2366 |
+
"content": "|<EXTRA_TOKENS_143>|",
|
2367 |
+
"lstrip": false,
|
2368 |
+
"normalized": false,
|
2369 |
+
"rstrip": false,
|
2370 |
+
"single_word": false,
|
2371 |
+
"special": true
|
2372 |
+
},
|
2373 |
+
"151939": {
|
2374 |
+
"content": "|<EXTRA_TOKENS_144>|",
|
2375 |
+
"lstrip": false,
|
2376 |
+
"normalized": false,
|
2377 |
+
"rstrip": false,
|
2378 |
+
"single_word": false,
|
2379 |
+
"special": true
|
2380 |
+
},
|
2381 |
+
"151940": {
|
2382 |
+
"content": "|<EXTRA_TOKENS_145>|",
|
2383 |
+
"lstrip": false,
|
2384 |
+
"normalized": false,
|
2385 |
+
"rstrip": false,
|
2386 |
+
"single_word": false,
|
2387 |
+
"special": true
|
2388 |
+
},
|
2389 |
+
"151941": {
|
2390 |
+
"content": "|<EXTRA_TOKENS_146>|",
|
2391 |
+
"lstrip": false,
|
2392 |
+
"normalized": false,
|
2393 |
+
"rstrip": false,
|
2394 |
+
"single_word": false,
|
2395 |
+
"special": true
|
2396 |
+
},
|
2397 |
+
"151942": {
|
2398 |
+
"content": "|<EXTRA_TOKENS_147>|",
|
2399 |
+
"lstrip": false,
|
2400 |
+
"normalized": false,
|
2401 |
+
"rstrip": false,
|
2402 |
+
"single_word": false,
|
2403 |
+
"special": true
|
2404 |
+
},
|
2405 |
+
"151943": {
|
2406 |
+
"content": "|<EXTRA_TOKENS_148>|",
|
2407 |
+
"lstrip": false,
|
2408 |
+
"normalized": false,
|
2409 |
+
"rstrip": false,
|
2410 |
+
"single_word": false,
|
2411 |
+
"special": true
|
2412 |
+
},
|
2413 |
+
"151944": {
|
2414 |
+
"content": "|<EXTRA_TOKENS_149>|",
|
2415 |
+
"lstrip": false,
|
2416 |
+
"normalized": false,
|
2417 |
+
"rstrip": false,
|
2418 |
+
"single_word": false,
|
2419 |
+
"special": true
|
2420 |
+
},
|
2421 |
+
"151945": {
|
2422 |
+
"content": "|<EXTRA_TOKENS_150>|",
|
2423 |
+
"lstrip": false,
|
2424 |
+
"normalized": false,
|
2425 |
+
"rstrip": false,
|
2426 |
+
"single_word": false,
|
2427 |
+
"special": true
|
2428 |
+
},
|
2429 |
+
"151946": {
|
2430 |
+
"content": "|<EXTRA_TOKENS_151>|",
|
2431 |
+
"lstrip": false,
|
2432 |
+
"normalized": false,
|
2433 |
+
"rstrip": false,
|
2434 |
+
"single_word": false,
|
2435 |
+
"special": true
|
2436 |
+
},
|
2437 |
+
"151947": {
|
2438 |
+
"content": "|<EXTRA_TOKENS_152>|",
|
2439 |
+
"lstrip": false,
|
2440 |
+
"normalized": false,
|
2441 |
+
"rstrip": false,
|
2442 |
+
"single_word": false,
|
2443 |
+
"special": true
|
2444 |
+
},
|
2445 |
+
"151948": {
|
2446 |
+
"content": "|<EXTRA_TOKENS_153>|",
|
2447 |
+
"lstrip": false,
|
2448 |
+
"normalized": false,
|
2449 |
+
"rstrip": false,
|
2450 |
+
"single_word": false,
|
2451 |
+
"special": true
|
2452 |
+
},
|
2453 |
+
"151949": {
|
2454 |
+
"content": "|<EXTRA_TOKENS_154>|",
|
2455 |
+
"lstrip": false,
|
2456 |
+
"normalized": false,
|
2457 |
+
"rstrip": false,
|
2458 |
+
"single_word": false,
|
2459 |
+
"special": true
|
2460 |
+
},
|
2461 |
+
"151950": {
|
2462 |
+
"content": "|<EXTRA_TOKENS_155>|",
|
2463 |
+
"lstrip": false,
|
2464 |
+
"normalized": false,
|
2465 |
+
"rstrip": false,
|
2466 |
+
"single_word": false,
|
2467 |
+
"special": true
|
2468 |
+
},
|
2469 |
+
"151951": {
|
2470 |
+
"content": "|<EXTRA_TOKENS_156>|",
|
2471 |
+
"lstrip": false,
|
2472 |
+
"normalized": false,
|
2473 |
+
"rstrip": false,
|
2474 |
+
"single_word": false,
|
2475 |
+
"special": true
|
2476 |
+
},
|
2477 |
+
"151952": {
|
2478 |
+
"content": "|<EXTRA_TOKENS_157>|",
|
2479 |
+
"lstrip": false,
|
2480 |
+
"normalized": false,
|
2481 |
+
"rstrip": false,
|
2482 |
+
"single_word": false,
|
2483 |
+
"special": true
|
2484 |
+
},
|
2485 |
+
"151953": {
|
2486 |
+
"content": "|<EXTRA_TOKENS_158>|",
|
2487 |
+
"lstrip": false,
|
2488 |
+
"normalized": false,
|
2489 |
+
"rstrip": false,
|
2490 |
+
"single_word": false,
|
2491 |
+
"special": true
|
2492 |
+
},
|
2493 |
+
"151954": {
|
2494 |
+
"content": "|<EXTRA_TOKENS_159>|",
|
2495 |
+
"lstrip": false,
|
2496 |
+
"normalized": false,
|
2497 |
+
"rstrip": false,
|
2498 |
+
"single_word": false,
|
2499 |
+
"special": true
|
2500 |
+
},
|
2501 |
+
"151955": {
|
2502 |
+
"content": "|<EXTRA_TOKENS_160>|",
|
2503 |
+
"lstrip": false,
|
2504 |
+
"normalized": false,
|
2505 |
+
"rstrip": false,
|
2506 |
+
"single_word": false,
|
2507 |
+
"special": true
|
2508 |
+
},
|
2509 |
+
"151956": {
|
2510 |
+
"content": "|<EXTRA_TOKENS_161>|",
|
2511 |
+
"lstrip": false,
|
2512 |
+
"normalized": false,
|
2513 |
+
"rstrip": false,
|
2514 |
+
"single_word": false,
|
2515 |
+
"special": true
|
2516 |
+
},
|
2517 |
+
"151957": {
|
2518 |
+
"content": "|<EXTRA_TOKENS_162>|",
|
2519 |
+
"lstrip": false,
|
2520 |
+
"normalized": false,
|
2521 |
+
"rstrip": false,
|
2522 |
+
"single_word": false,
|
2523 |
+
"special": true
|
2524 |
+
},
|
2525 |
+
"151958": {
|
2526 |
+
"content": "|<EXTRA_TOKENS_163>|",
|
2527 |
+
"lstrip": false,
|
2528 |
+
"normalized": false,
|
2529 |
+
"rstrip": false,
|
2530 |
+
"single_word": false,
|
2531 |
+
"special": true
|
2532 |
+
},
|
2533 |
+
"151959": {
|
2534 |
+
"content": "|<EXTRA_TOKENS_164>|",
|
2535 |
+
"lstrip": false,
|
2536 |
+
"normalized": false,
|
2537 |
+
"rstrip": false,
|
2538 |
+
"single_word": false,
|
2539 |
+
"special": true
|
2540 |
+
},
|
2541 |
+
"151960": {
|
2542 |
+
"content": "|<EXTRA_TOKENS_165>|",
|
2543 |
+
"lstrip": false,
|
2544 |
+
"normalized": false,
|
2545 |
+
"rstrip": false,
|
2546 |
+
"single_word": false,
|
2547 |
+
"special": true
|
2548 |
+
},
|
2549 |
+
"151961": {
|
2550 |
+
"content": "|<EXTRA_TOKENS_166>|",
|
2551 |
+
"lstrip": false,
|
2552 |
+
"normalized": false,
|
2553 |
+
"rstrip": false,
|
2554 |
+
"single_word": false,
|
2555 |
+
"special": true
|
2556 |
+
},
|
2557 |
+
"151962": {
|
2558 |
+
"content": "|<EXTRA_TOKENS_167>|",
|
2559 |
+
"lstrip": false,
|
2560 |
+
"normalized": false,
|
2561 |
+
"rstrip": false,
|
2562 |
+
"single_word": false,
|
2563 |
+
"special": true
|
2564 |
+
},
|
2565 |
+
"151963": {
|
2566 |
+
"content": "|<EXTRA_TOKENS_168>|",
|
2567 |
+
"lstrip": false,
|
2568 |
+
"normalized": false,
|
2569 |
+
"rstrip": false,
|
2570 |
+
"single_word": false,
|
2571 |
+
"special": true
|
2572 |
+
},
|
2573 |
+
"151964": {
|
2574 |
+
"content": "|<EXTRA_TOKENS_169>|",
|
2575 |
+
"lstrip": false,
|
2576 |
+
"normalized": false,
|
2577 |
+
"rstrip": false,
|
2578 |
+
"single_word": false,
|
2579 |
+
"special": true
|
2580 |
+
},
|
2581 |
+
"151965": {
|
2582 |
+
"content": "|<EXTRA_TOKENS_170>|",
|
2583 |
+
"lstrip": false,
|
2584 |
+
"normalized": false,
|
2585 |
+
"rstrip": false,
|
2586 |
+
"single_word": false,
|
2587 |
+
"special": true
|
2588 |
+
},
|
2589 |
+
"151966": {
|
2590 |
+
"content": "|<EXTRA_TOKENS_171>|",
|
2591 |
+
"lstrip": false,
|
2592 |
+
"normalized": false,
|
2593 |
+
"rstrip": false,
|
2594 |
+
"single_word": false,
|
2595 |
+
"special": true
|
2596 |
+
},
|
2597 |
+
"151967": {
|
2598 |
+
"content": "|<EXTRA_TOKENS_172>|",
|
2599 |
+
"lstrip": false,
|
2600 |
+
"normalized": false,
|
2601 |
+
"rstrip": false,
|
2602 |
+
"single_word": false,
|
2603 |
+
"special": true
|
2604 |
+
},
|
2605 |
+
"151968": {
|
2606 |
+
"content": "|<EXTRA_TOKENS_173>|",
|
2607 |
+
"lstrip": false,
|
2608 |
+
"normalized": false,
|
2609 |
+
"rstrip": false,
|
2610 |
+
"single_word": false,
|
2611 |
+
"special": true
|
2612 |
+
},
|
2613 |
+
"151969": {
|
2614 |
+
"content": "|<EXTRA_TOKENS_174>|",
|
2615 |
+
"lstrip": false,
|
2616 |
+
"normalized": false,
|
2617 |
+
"rstrip": false,
|
2618 |
+
"single_word": false,
|
2619 |
+
"special": true
|
2620 |
+
},
|
2621 |
+
"151970": {
|
2622 |
+
"content": "|<EXTRA_TOKENS_175>|",
|
2623 |
+
"lstrip": false,
|
2624 |
+
"normalized": false,
|
2625 |
+
"rstrip": false,
|
2626 |
+
"single_word": false,
|
2627 |
+
"special": true
|
2628 |
+
},
|
2629 |
+
"151971": {
|
2630 |
+
"content": "|<EXTRA_TOKENS_176>|",
|
2631 |
+
"lstrip": false,
|
2632 |
+
"normalized": false,
|
2633 |
+
"rstrip": false,
|
2634 |
+
"single_word": false,
|
2635 |
+
"special": true
|
2636 |
+
},
|
2637 |
+
"151972": {
|
2638 |
+
"content": "|<EXTRA_TOKENS_177>|",
|
2639 |
+
"lstrip": false,
|
2640 |
+
"normalized": false,
|
2641 |
+
"rstrip": false,
|
2642 |
+
"single_word": false,
|
2643 |
+
"special": true
|
2644 |
+
},
|
2645 |
+
"151973": {
|
2646 |
+
"content": "|<EXTRA_TOKENS_178>|",
|
2647 |
+
"lstrip": false,
|
2648 |
+
"normalized": false,
|
2649 |
+
"rstrip": false,
|
2650 |
+
"single_word": false,
|
2651 |
+
"special": true
|
2652 |
+
},
|
2653 |
+
"151974": {
|
2654 |
+
"content": "|<EXTRA_TOKENS_179>|",
|
2655 |
+
"lstrip": false,
|
2656 |
+
"normalized": false,
|
2657 |
+
"rstrip": false,
|
2658 |
+
"single_word": false,
|
2659 |
+
"special": true
|
2660 |
+
},
|
2661 |
+
"151975": {
|
2662 |
+
"content": "|<EXTRA_TOKENS_180>|",
|
2663 |
+
"lstrip": false,
|
2664 |
+
"normalized": false,
|
2665 |
+
"rstrip": false,
|
2666 |
+
"single_word": false,
|
2667 |
+
"special": true
|
2668 |
+
},
|
2669 |
+
"151976": {
|
2670 |
+
"content": "|<EXTRA_TOKENS_181>|",
|
2671 |
+
"lstrip": false,
|
2672 |
+
"normalized": false,
|
2673 |
+
"rstrip": false,
|
2674 |
+
"single_word": false,
|
2675 |
+
"special": true
|
2676 |
+
},
|
2677 |
+
"151977": {
|
2678 |
+
"content": "|<EXTRA_TOKENS_182>|",
|
2679 |
+
"lstrip": false,
|
2680 |
+
"normalized": false,
|
2681 |
+
"rstrip": false,
|
2682 |
+
"single_word": false,
|
2683 |
+
"special": true
|
2684 |
+
},
|
2685 |
+
"151978": {
|
2686 |
+
"content": "|<EXTRA_TOKENS_183>|",
|
2687 |
+
"lstrip": false,
|
2688 |
+
"normalized": false,
|
2689 |
+
"rstrip": false,
|
2690 |
+
"single_word": false,
|
2691 |
+
"special": true
|
2692 |
+
},
|
2693 |
+
"151979": {
|
2694 |
+
"content": "|<EXTRA_TOKENS_184>|",
|
2695 |
+
"lstrip": false,
|
2696 |
+
"normalized": false,
|
2697 |
+
"rstrip": false,
|
2698 |
+
"single_word": false,
|
2699 |
+
"special": true
|
2700 |
+
},
|
2701 |
+
"151980": {
|
2702 |
+
"content": "|<EXTRA_TOKENS_185>|",
|
2703 |
+
"lstrip": false,
|
2704 |
+
"normalized": false,
|
2705 |
+
"rstrip": false,
|
2706 |
+
"single_word": false,
|
2707 |
+
"special": true
|
2708 |
+
},
|
2709 |
+
"151981": {
|
2710 |
+
"content": "|<EXTRA_TOKENS_186>|",
|
2711 |
+
"lstrip": false,
|
2712 |
+
"normalized": false,
|
2713 |
+
"rstrip": false,
|
2714 |
+
"single_word": false,
|
2715 |
+
"special": true
|
2716 |
+
},
|
2717 |
+
"151982": {
|
2718 |
+
"content": "|<EXTRA_TOKENS_187>|",
|
2719 |
+
"lstrip": false,
|
2720 |
+
"normalized": false,
|
2721 |
+
"rstrip": false,
|
2722 |
+
"single_word": false,
|
2723 |
+
"special": true
|
2724 |
+
},
|
2725 |
+
"151983": {
|
2726 |
+
"content": "|<EXTRA_TOKENS_188>|",
|
2727 |
+
"lstrip": false,
|
2728 |
+
"normalized": false,
|
2729 |
+
"rstrip": false,
|
2730 |
+
"single_word": false,
|
2731 |
+
"special": true
|
2732 |
+
},
|
2733 |
+
"151984": {
|
2734 |
+
"content": "|<EXTRA_TOKENS_189>|",
|
2735 |
+
"lstrip": false,
|
2736 |
+
"normalized": false,
|
2737 |
+
"rstrip": false,
|
2738 |
+
"single_word": false,
|
2739 |
+
"special": true
|
2740 |
+
},
|
2741 |
+
"151985": {
|
2742 |
+
"content": "|<EXTRA_TOKENS_190>|",
|
2743 |
+
"lstrip": false,
|
2744 |
+
"normalized": false,
|
2745 |
+
"rstrip": false,
|
2746 |
+
"single_word": false,
|
2747 |
+
"special": true
|
2748 |
+
},
|
2749 |
+
"151986": {
|
2750 |
+
"content": "|<EXTRA_TOKENS_191>|",
|
2751 |
+
"lstrip": false,
|
2752 |
+
"normalized": false,
|
2753 |
+
"rstrip": false,
|
2754 |
+
"single_word": false,
|
2755 |
+
"special": true
|
2756 |
+
},
|
2757 |
+
"151987": {
|
2758 |
+
"content": "|<EXTRA_TOKENS_192>|",
|
2759 |
+
"lstrip": false,
|
2760 |
+
"normalized": false,
|
2761 |
+
"rstrip": false,
|
2762 |
+
"single_word": false,
|
2763 |
+
"special": true
|
2764 |
+
},
|
2765 |
+
"151988": {
|
2766 |
+
"content": "|<EXTRA_TOKENS_193>|",
|
2767 |
+
"lstrip": false,
|
2768 |
+
"normalized": false,
|
2769 |
+
"rstrip": false,
|
2770 |
+
"single_word": false,
|
2771 |
+
"special": true
|
2772 |
+
},
|
2773 |
+
"151989": {
|
2774 |
+
"content": "|<EXTRA_TOKENS_194>|",
|
2775 |
+
"lstrip": false,
|
2776 |
+
"normalized": false,
|
2777 |
+
"rstrip": false,
|
2778 |
+
"single_word": false,
|
2779 |
+
"special": true
|
2780 |
+
},
|
2781 |
+
"151990": {
|
2782 |
+
"content": "|<EXTRA_TOKENS_195>|",
|
2783 |
+
"lstrip": false,
|
2784 |
+
"normalized": false,
|
2785 |
+
"rstrip": false,
|
2786 |
+
"single_word": false,
|
2787 |
+
"special": true
|
2788 |
+
},
|
2789 |
+
"151991": {
|
2790 |
+
"content": "|<EXTRA_TOKENS_196>|",
|
2791 |
+
"lstrip": false,
|
2792 |
+
"normalized": false,
|
2793 |
+
"rstrip": false,
|
2794 |
+
"single_word": false,
|
2795 |
+
"special": true
|
2796 |
+
},
|
2797 |
+
"151992": {
|
2798 |
+
"content": "|<EXTRA_TOKENS_197>|",
|
2799 |
+
"lstrip": false,
|
2800 |
+
"normalized": false,
|
2801 |
+
"rstrip": false,
|
2802 |
+
"single_word": false,
|
2803 |
+
"special": true
|
2804 |
+
},
|
2805 |
+
"151993": {
|
2806 |
+
"content": "|<EXTRA_TOKENS_198>|",
|
2807 |
+
"lstrip": false,
|
2808 |
+
"normalized": false,
|
2809 |
+
"rstrip": false,
|
2810 |
+
"single_word": false,
|
2811 |
+
"special": true
|
2812 |
+
},
|
2813 |
+
"151994": {
|
2814 |
+
"content": "|<EXTRA_TOKENS_199>|",
|
2815 |
+
"lstrip": false,
|
2816 |
+
"normalized": false,
|
2817 |
+
"rstrip": false,
|
2818 |
+
"single_word": false,
|
2819 |
+
"special": true
|
2820 |
+
},
|
2821 |
+
"151995": {
|
2822 |
+
"content": "|<EXTRA_TOKENS_200>|",
|
2823 |
+
"lstrip": false,
|
2824 |
+
"normalized": false,
|
2825 |
+
"rstrip": false,
|
2826 |
+
"single_word": false,
|
2827 |
+
"special": true
|
2828 |
+
},
|
2829 |
+
"151996": {
|
2830 |
+
"content": "|<EXTRA_TOKENS_201>|",
|
2831 |
+
"lstrip": false,
|
2832 |
+
"normalized": false,
|
2833 |
+
"rstrip": false,
|
2834 |
+
"single_word": false,
|
2835 |
+
"special": true
|
2836 |
+
},
|
2837 |
+
"151997": {
|
2838 |
+
"content": "|<EXTRA_TOKENS_202>|",
|
2839 |
+
"lstrip": false,
|
2840 |
+
"normalized": false,
|
2841 |
+
"rstrip": false,
|
2842 |
+
"single_word": false,
|
2843 |
+
"special": true
|
2844 |
+
},
|
2845 |
+
"151998": {
|
2846 |
+
"content": "|<EXTRA_TOKENS_203>|",
|
2847 |
+
"lstrip": false,
|
2848 |
+
"normalized": false,
|
2849 |
+
"rstrip": false,
|
2850 |
+
"single_word": false,
|
2851 |
+
"special": true
|
2852 |
+
},
|
2853 |
+
"151999": {
|
2854 |
+
"content": "|<EXTRA_TOKENS_204>|",
|
2855 |
+
"lstrip": false,
|
2856 |
+
"normalized": false,
|
2857 |
+
"rstrip": false,
|
2858 |
+
"single_word": false,
|
2859 |
+
"special": true
|
2860 |
+
},
|
2861 |
+
"152000": {
|
2862 |
+
"content": "|<EXTRA_TOKENS_205>|",
|
2863 |
+
"lstrip": false,
|
2864 |
+
"normalized": false,
|
2865 |
+
"rstrip": false,
|
2866 |
+
"single_word": false,
|
2867 |
+
"special": true
|
2868 |
+
},
|
2869 |
+
"152001": {
|
2870 |
+
"content": "|<EXTRA_TOKENS_206>|",
|
2871 |
+
"lstrip": false,
|
2872 |
+
"normalized": false,
|
2873 |
+
"rstrip": false,
|
2874 |
+
"single_word": false,
|
2875 |
+
"special": true
|
2876 |
+
},
|
2877 |
+
"152002": {
|
2878 |
+
"content": "|<EXTRA_TOKENS_207>|",
|
2879 |
+
"lstrip": false,
|
2880 |
+
"normalized": false,
|
2881 |
+
"rstrip": false,
|
2882 |
+
"single_word": false,
|
2883 |
+
"special": true
|
2884 |
+
},
|
2885 |
+
"152003": {
|
2886 |
+
"content": "|<EXTRA_TOKENS_208>|",
|
2887 |
+
"lstrip": false,
|
2888 |
+
"normalized": false,
|
2889 |
+
"rstrip": false,
|
2890 |
+
"single_word": false,
|
2891 |
+
"special": true
|
2892 |
+
},
|
2893 |
+
"152004": {
|
2894 |
+
"content": "|<EXTRA_TOKENS_209>|",
|
2895 |
+
"lstrip": false,
|
2896 |
+
"normalized": false,
|
2897 |
+
"rstrip": false,
|
2898 |
+
"single_word": false,
|
2899 |
+
"special": true
|
2900 |
+
},
|
2901 |
+
"152005": {
|
2902 |
+
"content": "|<EXTRA_TOKENS_210>|",
|
2903 |
+
"lstrip": false,
|
2904 |
+
"normalized": false,
|
2905 |
+
"rstrip": false,
|
2906 |
+
"single_word": false,
|
2907 |
+
"special": true
|
2908 |
+
},
|
2909 |
+
"152006": {
|
2910 |
+
"content": "|<EXTRA_TOKENS_211>|",
|
2911 |
+
"lstrip": false,
|
2912 |
+
"normalized": false,
|
2913 |
+
"rstrip": false,
|
2914 |
+
"single_word": false,
|
2915 |
+
"special": true
|
2916 |
+
},
|
2917 |
+
"152007": {
|
2918 |
+
"content": "|<EXTRA_TOKENS_212>|",
|
2919 |
+
"lstrip": false,
|
2920 |
+
"normalized": false,
|
2921 |
+
"rstrip": false,
|
2922 |
+
"single_word": false,
|
2923 |
+
"special": true
|
2924 |
+
},
|
2925 |
+
"152008": {
|
2926 |
+
"content": "|<EXTRA_TOKENS_213>|",
|
2927 |
+
"lstrip": false,
|
2928 |
+
"normalized": false,
|
2929 |
+
"rstrip": false,
|
2930 |
+
"single_word": false,
|
2931 |
+
"special": true
|
2932 |
+
},
|
2933 |
+
"152009": {
|
2934 |
+
"content": "|<EXTRA_TOKENS_214>|",
|
2935 |
+
"lstrip": false,
|
2936 |
+
"normalized": false,
|
2937 |
+
"rstrip": false,
|
2938 |
+
"single_word": false,
|
2939 |
+
"special": true
|
2940 |
+
},
|
2941 |
+
"152010": {
|
2942 |
+
"content": "|<EXTRA_TOKENS_215>|",
|
2943 |
+
"lstrip": false,
|
2944 |
+
"normalized": false,
|
2945 |
+
"rstrip": false,
|
2946 |
+
"single_word": false,
|
2947 |
+
"special": true
|
2948 |
+
},
|
2949 |
+
"152011": {
|
2950 |
+
"content": "|<EXTRA_TOKENS_216>|",
|
2951 |
+
"lstrip": false,
|
2952 |
+
"normalized": false,
|
2953 |
+
"rstrip": false,
|
2954 |
+
"single_word": false,
|
2955 |
+
"special": true
|
2956 |
+
},
|
2957 |
+
"152012": {
|
2958 |
+
"content": "|<EXTRA_TOKENS_217>|",
|
2959 |
+
"lstrip": false,
|
2960 |
+
"normalized": false,
|
2961 |
+
"rstrip": false,
|
2962 |
+
"single_word": false,
|
2963 |
+
"special": true
|
2964 |
+
},
|
2965 |
+
"152013": {
|
2966 |
+
"content": "|<EXTRA_TOKENS_218>|",
|
2967 |
+
"lstrip": false,
|
2968 |
+
"normalized": false,
|
2969 |
+
"rstrip": false,
|
2970 |
+
"single_word": false,
|
2971 |
+
"special": true
|
2972 |
+
},
|
2973 |
+
"152014": {
|
2974 |
+
"content": "|<EXTRA_TOKENS_219>|",
|
2975 |
+
"lstrip": false,
|
2976 |
+
"normalized": false,
|
2977 |
+
"rstrip": false,
|
2978 |
+
"single_word": false,
|
2979 |
+
"special": true
|
2980 |
+
},
|
2981 |
+
"152015": {
|
2982 |
+
"content": "|<EXTRA_TOKENS_220>|",
|
2983 |
+
"lstrip": false,
|
2984 |
+
"normalized": false,
|
2985 |
+
"rstrip": false,
|
2986 |
+
"single_word": false,
|
2987 |
+
"special": true
|
2988 |
+
},
|
2989 |
+
"152016": {
|
2990 |
+
"content": "|<EXTRA_TOKENS_221>|",
|
2991 |
+
"lstrip": false,
|
2992 |
+
"normalized": false,
|
2993 |
+
"rstrip": false,
|
2994 |
+
"single_word": false,
|
2995 |
+
"special": true
|
2996 |
+
},
|
2997 |
+
"152017": {
|
2998 |
+
"content": "|<EXTRA_TOKENS_222>|",
|
2999 |
+
"lstrip": false,
|
3000 |
+
"normalized": false,
|
3001 |
+
"rstrip": false,
|
3002 |
+
"single_word": false,
|
3003 |
+
"special": true
|
3004 |
+
},
|
3005 |
+
"152018": {
|
3006 |
+
"content": "|<EXTRA_TOKENS_223>|",
|
3007 |
+
"lstrip": false,
|
3008 |
+
"normalized": false,
|
3009 |
+
"rstrip": false,
|
3010 |
+
"single_word": false,
|
3011 |
+
"special": true
|
3012 |
+
},
|
3013 |
+
"152019": {
|
3014 |
+
"content": "|<EXTRA_TOKENS_224>|",
|
3015 |
+
"lstrip": false,
|
3016 |
+
"normalized": false,
|
3017 |
+
"rstrip": false,
|
3018 |
+
"single_word": false,
|
3019 |
+
"special": true
|
3020 |
+
},
|
3021 |
+
"152020": {
|
3022 |
+
"content": "|<EXTRA_TOKENS_225>|",
|
3023 |
+
"lstrip": false,
|
3024 |
+
"normalized": false,
|
3025 |
+
"rstrip": false,
|
3026 |
+
"single_word": false,
|
3027 |
+
"special": true
|
3028 |
+
},
|
3029 |
+
"152021": {
|
3030 |
+
"content": "|<EXTRA_TOKENS_226>|",
|
3031 |
+
"lstrip": false,
|
3032 |
+
"normalized": false,
|
3033 |
+
"rstrip": false,
|
3034 |
+
"single_word": false,
|
3035 |
+
"special": true
|
3036 |
+
},
|
3037 |
+
"152022": {
|
3038 |
+
"content": "|<EXTRA_TOKENS_227>|",
|
3039 |
+
"lstrip": false,
|
3040 |
+
"normalized": false,
|
3041 |
+
"rstrip": false,
|
3042 |
+
"single_word": false,
|
3043 |
+
"special": true
|
3044 |
+
},
|
3045 |
+
"152023": {
|
3046 |
+
"content": "|<EXTRA_TOKENS_228>|",
|
3047 |
+
"lstrip": false,
|
3048 |
+
"normalized": false,
|
3049 |
+
"rstrip": false,
|
3050 |
+
"single_word": false,
|
3051 |
+
"special": true
|
3052 |
+
},
|
3053 |
+
"152024": {
|
3054 |
+
"content": "|<EXTRA_TOKENS_229>|",
|
3055 |
+
"lstrip": false,
|
3056 |
+
"normalized": false,
|
3057 |
+
"rstrip": false,
|
3058 |
+
"single_word": false,
|
3059 |
+
"special": true
|
3060 |
+
},
|
3061 |
+
"152025": {
|
3062 |
+
"content": "|<EXTRA_TOKENS_230>|",
|
3063 |
+
"lstrip": false,
|
3064 |
+
"normalized": false,
|
3065 |
+
"rstrip": false,
|
3066 |
+
"single_word": false,
|
3067 |
+
"special": true
|
3068 |
+
},
|
3069 |
+
"152026": {
|
3070 |
+
"content": "|<EXTRA_TOKENS_231>|",
|
3071 |
+
"lstrip": false,
|
3072 |
+
"normalized": false,
|
3073 |
+
"rstrip": false,
|
3074 |
+
"single_word": false,
|
3075 |
+
"special": true
|
3076 |
+
},
|
3077 |
+
"152027": {
|
3078 |
+
"content": "|<EXTRA_TOKENS_232>|",
|
3079 |
+
"lstrip": false,
|
3080 |
+
"normalized": false,
|
3081 |
+
"rstrip": false,
|
3082 |
+
"single_word": false,
|
3083 |
+
"special": true
|
3084 |
+
},
|
3085 |
+
"152028": {
|
3086 |
+
"content": "|<EXTRA_TOKENS_233>|",
|
3087 |
+
"lstrip": false,
|
3088 |
+
"normalized": false,
|
3089 |
+
"rstrip": false,
|
3090 |
+
"single_word": false,
|
3091 |
+
"special": true
|
3092 |
+
},
|
3093 |
+
"152029": {
|
3094 |
+
"content": "|<EXTRA_TOKENS_234>|",
|
3095 |
+
"lstrip": false,
|
3096 |
+
"normalized": false,
|
3097 |
+
"rstrip": false,
|
3098 |
+
"single_word": false,
|
3099 |
+
"special": true
|
3100 |
+
},
|
3101 |
+
"152030": {
|
3102 |
+
"content": "|<EXTRA_TOKENS_235>|",
|
3103 |
+
"lstrip": false,
|
3104 |
+
"normalized": false,
|
3105 |
+
"rstrip": false,
|
3106 |
+
"single_word": false,
|
3107 |
+
"special": true
|
3108 |
+
},
|
3109 |
+
"152031": {
|
3110 |
+
"content": "|<EXTRA_TOKENS_236>|",
|
3111 |
+
"lstrip": false,
|
3112 |
+
"normalized": false,
|
3113 |
+
"rstrip": false,
|
3114 |
+
"single_word": false,
|
3115 |
+
"special": true
|
3116 |
+
},
|
3117 |
+
"152032": {
|
3118 |
+
"content": "|<EXTRA_TOKENS_237>|",
|
3119 |
+
"lstrip": false,
|
3120 |
+
"normalized": false,
|
3121 |
+
"rstrip": false,
|
3122 |
+
"single_word": false,
|
3123 |
+
"special": true
|
3124 |
+
},
|
3125 |
+
"152033": {
|
3126 |
+
"content": "|<EXTRA_TOKENS_238>|",
|
3127 |
+
"lstrip": false,
|
3128 |
+
"normalized": false,
|
3129 |
+
"rstrip": false,
|
3130 |
+
"single_word": false,
|
3131 |
+
"special": true
|
3132 |
+
},
|
3133 |
+
"152034": {
|
3134 |
+
"content": "|<EXTRA_TOKENS_239>|",
|
3135 |
+
"lstrip": false,
|
3136 |
+
"normalized": false,
|
3137 |
+
"rstrip": false,
|
3138 |
+
"single_word": false,
|
3139 |
+
"special": true
|
3140 |
+
},
|
3141 |
+
"152035": {
|
3142 |
+
"content": "|<EXTRA_TOKENS_240>|",
|
3143 |
+
"lstrip": false,
|
3144 |
+
"normalized": false,
|
3145 |
+
"rstrip": false,
|
3146 |
+
"single_word": false,
|
3147 |
+
"special": true
|
3148 |
+
},
|
3149 |
+
"152036": {
|
3150 |
+
"content": "|<EXTRA_TOKENS_241>|",
|
3151 |
+
"lstrip": false,
|
3152 |
+
"normalized": false,
|
3153 |
+
"rstrip": false,
|
3154 |
+
"single_word": false,
|
3155 |
+
"special": true
|
3156 |
+
},
|
3157 |
+
"152037": {
|
3158 |
+
"content": "|<EXTRA_TOKENS_242>|",
|
3159 |
+
"lstrip": false,
|
3160 |
+
"normalized": false,
|
3161 |
+
"rstrip": false,
|
3162 |
+
"single_word": false,
|
3163 |
+
"special": true
|
3164 |
+
},
|
3165 |
+
"152038": {
|
3166 |
+
"content": "|<EXTRA_TOKENS_243>|",
|
3167 |
+
"lstrip": false,
|
3168 |
+
"normalized": false,
|
3169 |
+
"rstrip": false,
|
3170 |
+
"single_word": false,
|
3171 |
+
"special": true
|
3172 |
+
},
|
3173 |
+
"152039": {
|
3174 |
+
"content": "|<EXTRA_TOKENS_244>|",
|
3175 |
+
"lstrip": false,
|
3176 |
+
"normalized": false,
|
3177 |
+
"rstrip": false,
|
3178 |
+
"single_word": false,
|
3179 |
+
"special": true
|
3180 |
+
},
|
3181 |
+
"152040": {
|
3182 |
+
"content": "|<EXTRA_TOKENS_245>|",
|
3183 |
+
"lstrip": false,
|
3184 |
+
"normalized": false,
|
3185 |
+
"rstrip": false,
|
3186 |
+
"single_word": false,
|
3187 |
+
"special": true
|
3188 |
+
},
|
3189 |
+
"152041": {
|
3190 |
+
"content": "|<EXTRA_TOKENS_246>|",
|
3191 |
+
"lstrip": false,
|
3192 |
+
"normalized": false,
|
3193 |
+
"rstrip": false,
|
3194 |
+
"single_word": false,
|
3195 |
+
"special": true
|
3196 |
+
},
|
3197 |
+
"152042": {
|
3198 |
+
"content": "|<EXTRA_TOKENS_247>|",
|
3199 |
+
"lstrip": false,
|
3200 |
+
"normalized": false,
|
3201 |
+
"rstrip": false,
|
3202 |
+
"single_word": false,
|
3203 |
+
"special": true
|
3204 |
+
},
|
3205 |
+
"152043": {
|
3206 |
+
"content": "|<EXTRA_TOKENS_248>|",
|
3207 |
+
"lstrip": false,
|
3208 |
+
"normalized": false,
|
3209 |
+
"rstrip": false,
|
3210 |
+
"single_word": false,
|
3211 |
+
"special": true
|
3212 |
+
},
|
3213 |
+
"152044": {
|
3214 |
+
"content": "|<EXTRA_TOKENS_249>|",
|
3215 |
+
"lstrip": false,
|
3216 |
+
"normalized": false,
|
3217 |
+
"rstrip": false,
|
3218 |
+
"single_word": false,
|
3219 |
+
"special": true
|
3220 |
+
},
|
3221 |
+
"152045": {
|
3222 |
+
"content": "|<EXTRA_TOKENS_250>|",
|
3223 |
+
"lstrip": false,
|
3224 |
+
"normalized": false,
|
3225 |
+
"rstrip": false,
|
3226 |
+
"single_word": false,
|
3227 |
+
"special": true
|
3228 |
+
},
|
3229 |
+
"152046": {
|
3230 |
+
"content": "|<EXTRA_TOKENS_251>|",
|
3231 |
+
"lstrip": false,
|
3232 |
+
"normalized": false,
|
3233 |
+
"rstrip": false,
|
3234 |
+
"single_word": false,
|
3235 |
+
"special": true
|
3236 |
+
},
|
3237 |
+
"152047": {
|
3238 |
+
"content": "|<EXTRA_TOKENS_252>|",
|
3239 |
+
"lstrip": false,
|
3240 |
+
"normalized": false,
|
3241 |
+
"rstrip": false,
|
3242 |
+
"single_word": false,
|
3243 |
+
"special": true
|
3244 |
+
},
|
3245 |
+
"152048": {
|
3246 |
+
"content": "|<EXTRA_TOKENS_253>|",
|
3247 |
+
"lstrip": false,
|
3248 |
+
"normalized": false,
|
3249 |
+
"rstrip": false,
|
3250 |
+
"single_word": false,
|
3251 |
+
"special": true
|
3252 |
+
},
|
3253 |
+
"152049": {
|
3254 |
+
"content": "|<EXTRA_TOKENS_254>|",
|
3255 |
+
"lstrip": false,
|
3256 |
+
"normalized": false,
|
3257 |
+
"rstrip": false,
|
3258 |
+
"single_word": false,
|
3259 |
+
"special": true
|
3260 |
+
},
|
3261 |
+
"152050": {
|
3262 |
+
"content": "|<EXTRA_TOKENS_255>|",
|
3263 |
+
"lstrip": false,
|
3264 |
+
"normalized": false,
|
3265 |
+
"rstrip": false,
|
3266 |
+
"single_word": false,
|
3267 |
+
"special": true
|
3268 |
+
},
|
3269 |
+
"152051": {
|
3270 |
+
"content": "|<EXTRA_TOKENS_256>|",
|
3271 |
+
"lstrip": false,
|
3272 |
+
"normalized": false,
|
3273 |
+
"rstrip": false,
|
3274 |
+
"single_word": false,
|
3275 |
+
"special": true
|
3276 |
+
},
|
3277 |
+
"152052": {
|
3278 |
+
"content": "|<EXTRA_TOKENS_257>|",
|
3279 |
+
"lstrip": false,
|
3280 |
+
"normalized": false,
|
3281 |
+
"rstrip": false,
|
3282 |
+
"single_word": false,
|
3283 |
+
"special": true
|
3284 |
+
},
|
3285 |
+
"152053": {
|
3286 |
+
"content": "|<EXTRA_TOKENS_258>|",
|
3287 |
+
"lstrip": false,
|
3288 |
+
"normalized": false,
|
3289 |
+
"rstrip": false,
|
3290 |
+
"single_word": false,
|
3291 |
+
"special": true
|
3292 |
+
},
|
3293 |
+
"152054": {
|
3294 |
+
"content": "|<EXTRA_TOKENS_259>|",
|
3295 |
+
"lstrip": false,
|
3296 |
+
"normalized": false,
|
3297 |
+
"rstrip": false,
|
3298 |
+
"single_word": false,
|
3299 |
+
"special": true
|
3300 |
+
},
|
3301 |
+
"152055": {
|
3302 |
+
"content": "|<EXTRA_TOKENS_260>|",
|
3303 |
+
"lstrip": false,
|
3304 |
+
"normalized": false,
|
3305 |
+
"rstrip": false,
|
3306 |
+
"single_word": false,
|
3307 |
+
"special": true
|
3308 |
+
},
|
3309 |
+
"152056": {
|
3310 |
+
"content": "|<EXTRA_TOKENS_261>|",
|
3311 |
+
"lstrip": false,
|
3312 |
+
"normalized": false,
|
3313 |
+
"rstrip": false,
|
3314 |
+
"single_word": false,
|
3315 |
+
"special": true
|
3316 |
+
},
|
3317 |
+
"152057": {
|
3318 |
+
"content": "|<EXTRA_TOKENS_262>|",
|
3319 |
+
"lstrip": false,
|
3320 |
+
"normalized": false,
|
3321 |
+
"rstrip": false,
|
3322 |
+
"single_word": false,
|
3323 |
+
"special": true
|
3324 |
+
},
|
3325 |
+
"152058": {
|
3326 |
+
"content": "|<EXTRA_TOKENS_263>|",
|
3327 |
+
"lstrip": false,
|
3328 |
+
"normalized": false,
|
3329 |
+
"rstrip": false,
|
3330 |
+
"single_word": false,
|
3331 |
+
"special": true
|
3332 |
+
},
|
3333 |
+
"152059": {
|
3334 |
+
"content": "|<EXTRA_TOKENS_264>|",
|
3335 |
+
"lstrip": false,
|
3336 |
+
"normalized": false,
|
3337 |
+
"rstrip": false,
|
3338 |
+
"single_word": false,
|
3339 |
+
"special": true
|
3340 |
+
},
|
3341 |
+
"152060": {
|
3342 |
+
"content": "|<EXTRA_TOKENS_265>|",
|
3343 |
+
"lstrip": false,
|
3344 |
+
"normalized": false,
|
3345 |
+
"rstrip": false,
|
3346 |
+
"single_word": false,
|
3347 |
+
"special": true
|
3348 |
+
},
|
3349 |
+
"152061": {
|
3350 |
+
"content": "|<EXTRA_TOKENS_266>|",
|
3351 |
+
"lstrip": false,
|
3352 |
+
"normalized": false,
|
3353 |
+
"rstrip": false,
|
3354 |
+
"single_word": false,
|
3355 |
+
"special": true
|
3356 |
+
},
|
3357 |
+
"152062": {
|
3358 |
+
"content": "|<EXTRA_TOKENS_267>|",
|
3359 |
+
"lstrip": false,
|
3360 |
+
"normalized": false,
|
3361 |
+
"rstrip": false,
|
3362 |
+
"single_word": false,
|
3363 |
+
"special": true
|
3364 |
+
},
|
3365 |
+
"152063": {
|
3366 |
+
"content": "|<EXTRA_TOKENS_268>|",
|
3367 |
+
"lstrip": false,
|
3368 |
+
"normalized": false,
|
3369 |
+
"rstrip": false,
|
3370 |
+
"single_word": false,
|
3371 |
+
"special": true
|
3372 |
+
},
|
3373 |
+
"152064": {
|
3374 |
+
"content": "<im_start>",
|
3375 |
+
"lstrip": false,
|
3376 |
+
"normalized": false,
|
3377 |
+
"rstrip": false,
|
3378 |
+
"single_word": false,
|
3379 |
+
"special": true
|
3380 |
+
},
|
3381 |
+
"152065": {
|
3382 |
+
"content": "<im_end>",
|
3383 |
+
"lstrip": false,
|
3384 |
+
"normalized": false,
|
3385 |
+
"rstrip": false,
|
3386 |
+
"single_word": false,
|
3387 |
+
"special": true
|
3388 |
+
},
|
3389 |
+
"152066": {
|
3390 |
+
"content": "<im_patch>",
|
3391 |
+
"lstrip": false,
|
3392 |
+
"normalized": false,
|
3393 |
+
"rstrip": false,
|
3394 |
+
"single_word": false,
|
3395 |
+
"special": true
|
3396 |
+
},
|
3397 |
+
"152067": {
|
3398 |
+
"content": "<im_col>",
|
3399 |
+
"lstrip": false,
|
3400 |
+
"normalized": false,
|
3401 |
+
"rstrip": false,
|
3402 |
+
"single_word": false,
|
3403 |
+
"special": true
|
3404 |
+
},
|
3405 |
+
"152068": {
|
3406 |
+
"content": "<|image|>",
|
3407 |
+
"lstrip": false,
|
3408 |
+
"normalized": false,
|
3409 |
+
"rstrip": false,
|
3410 |
+
"single_word": false,
|
3411 |
+
"special": true
|
3412 |
+
},
|
3413 |
+
"152069": {
|
3414 |
+
"content": "<im_low>",
|
3415 |
+
"lstrip": false,
|
3416 |
+
"normalized": false,
|
3417 |
+
"rstrip": false,
|
3418 |
+
"single_word": false,
|
3419 |
+
"special": true
|
3420 |
+
}
|
3421 |
+
},
|
3422 |
+
"additional_special_tokens": [
|
3423 |
+
"|<EXTRA_TOKENS_0>|",
|
3424 |
+
"|<EXTRA_TOKENS_1>|",
|
3425 |
+
"|<EXTRA_TOKENS_2>|",
|
3426 |
+
"|<EXTRA_TOKENS_3>|",
|
3427 |
+
"|<EXTRA_TOKENS_4>|",
|
3428 |
+
"|<EXTRA_TOKENS_5>|",
|
3429 |
+
"|<EXTRA_TOKENS_6>|",
|
3430 |
+
"|<EXTRA_TOKENS_7>|",
|
3431 |
+
"|<EXTRA_TOKENS_8>|",
|
3432 |
+
"|<EXTRA_TOKENS_9>|",
|
3433 |
+
"|<EXTRA_TOKENS_10>|",
|
3434 |
+
"|<EXTRA_TOKENS_11>|",
|
3435 |
+
"|<EXTRA_TOKENS_12>|",
|
3436 |
+
"|<EXTRA_TOKENS_13>|",
|
3437 |
+
"|<EXTRA_TOKENS_14>|",
|
3438 |
+
"|<EXTRA_TOKENS_15>|",
|
3439 |
+
"|<EXTRA_TOKENS_16>|",
|
3440 |
+
"|<EXTRA_TOKENS_17>|",
|
3441 |
+
"|<EXTRA_TOKENS_18>|",
|
3442 |
+
"|<EXTRA_TOKENS_19>|",
|
3443 |
+
"|<EXTRA_TOKENS_20>|",
|
3444 |
+
"|<EXTRA_TOKENS_21>|",
|
3445 |
+
"|<EXTRA_TOKENS_22>|",
|
3446 |
+
"|<EXTRA_TOKENS_23>|",
|
3447 |
+
"|<EXTRA_TOKENS_24>|",
|
3448 |
+
"|<EXTRA_TOKENS_25>|",
|
3449 |
+
"|<EXTRA_TOKENS_26>|",
|
3450 |
+
"|<EXTRA_TOKENS_27>|",
|
3451 |
+
"|<EXTRA_TOKENS_28>|",
|
3452 |
+
"|<EXTRA_TOKENS_29>|",
|
3453 |
+
"|<EXTRA_TOKENS_30>|",
|
3454 |
+
"|<EXTRA_TOKENS_31>|",
|
3455 |
+
"|<EXTRA_TOKENS_32>|",
|
3456 |
+
"|<EXTRA_TOKENS_33>|",
|
3457 |
+
"|<EXTRA_TOKENS_34>|",
|
3458 |
+
"|<EXTRA_TOKENS_35>|",
|
3459 |
+
"|<EXTRA_TOKENS_36>|",
|
3460 |
+
"|<EXTRA_TOKENS_37>|",
|
3461 |
+
"|<EXTRA_TOKENS_38>|",
|
3462 |
+
"|<EXTRA_TOKENS_39>|",
|
3463 |
+
"|<EXTRA_TOKENS_40>|",
|
3464 |
+
"|<EXTRA_TOKENS_41>|",
|
3465 |
+
"|<EXTRA_TOKENS_42>|",
|
3466 |
+
"|<EXTRA_TOKENS_43>|",
|
3467 |
+
"|<EXTRA_TOKENS_44>|",
|
3468 |
+
"|<EXTRA_TOKENS_45>|",
|
3469 |
+
"|<EXTRA_TOKENS_46>|",
|
3470 |
+
"|<EXTRA_TOKENS_47>|",
|
3471 |
+
"|<EXTRA_TOKENS_48>|",
|
3472 |
+
"|<EXTRA_TOKENS_49>|",
|
3473 |
+
"|<EXTRA_TOKENS_50>|",
|
3474 |
+
"|<EXTRA_TOKENS_51>|",
|
3475 |
+
"|<EXTRA_TOKENS_52>|",
|
3476 |
+
"|<EXTRA_TOKENS_53>|",
|
3477 |
+
"|<EXTRA_TOKENS_54>|",
|
3478 |
+
"|<EXTRA_TOKENS_55>|",
|
3479 |
+
"|<EXTRA_TOKENS_56>|",
|
3480 |
+
"|<EXTRA_TOKENS_57>|",
|
3481 |
+
"|<EXTRA_TOKENS_58>|",
|
3482 |
+
"|<EXTRA_TOKENS_59>|",
|
3483 |
+
"|<EXTRA_TOKENS_60>|",
|
3484 |
+
"|<EXTRA_TOKENS_61>|",
|
3485 |
+
"|<EXTRA_TOKENS_62>|",
|
3486 |
+
"|<EXTRA_TOKENS_63>|",
|
3487 |
+
"|<EXTRA_TOKENS_64>|",
|
3488 |
+
"|<EXTRA_TOKENS_65>|",
|
3489 |
+
"|<EXTRA_TOKENS_66>|",
|
3490 |
+
"|<EXTRA_TOKENS_67>|",
|
3491 |
+
"|<EXTRA_TOKENS_68>|",
|
3492 |
+
"|<EXTRA_TOKENS_69>|",
|
3493 |
+
"|<EXTRA_TOKENS_70>|",
|
3494 |
+
"|<EXTRA_TOKENS_71>|",
|
3495 |
+
"|<EXTRA_TOKENS_72>|",
|
3496 |
+
"|<EXTRA_TOKENS_73>|",
|
3497 |
+
"|<EXTRA_TOKENS_74>|",
|
3498 |
+
"|<EXTRA_TOKENS_75>|",
|
3499 |
+
"|<EXTRA_TOKENS_76>|",
|
3500 |
+
"|<EXTRA_TOKENS_77>|",
|
3501 |
+
"|<EXTRA_TOKENS_78>|",
|
3502 |
+
"|<EXTRA_TOKENS_79>|",
|
3503 |
+
"|<EXTRA_TOKENS_80>|",
|
3504 |
+
"|<EXTRA_TOKENS_81>|",
|
3505 |
+
"|<EXTRA_TOKENS_82>|",
|
3506 |
+
"|<EXTRA_TOKENS_83>|",
|
3507 |
+
"|<EXTRA_TOKENS_84>|",
|
3508 |
+
"|<EXTRA_TOKENS_85>|",
|
3509 |
+
"|<EXTRA_TOKENS_86>|",
|
3510 |
+
"|<EXTRA_TOKENS_87>|",
|
3511 |
+
"|<EXTRA_TOKENS_88>|",
|
3512 |
+
"|<EXTRA_TOKENS_89>|",
|
3513 |
+
"|<EXTRA_TOKENS_90>|",
|
3514 |
+
"|<EXTRA_TOKENS_91>|",
|
3515 |
+
"|<EXTRA_TOKENS_92>|",
|
3516 |
+
"|<EXTRA_TOKENS_93>|",
|
3517 |
+
"|<EXTRA_TOKENS_94>|",
|
3518 |
+
"|<EXTRA_TOKENS_95>|",
|
3519 |
+
"|<EXTRA_TOKENS_96>|",
|
3520 |
+
"|<EXTRA_TOKENS_97>|",
|
3521 |
+
"|<EXTRA_TOKENS_98>|",
|
3522 |
+
"|<EXTRA_TOKENS_99>|",
|
3523 |
+
"|<EXTRA_TOKENS_100>|",
|
3524 |
+
"|<EXTRA_TOKENS_101>|",
|
3525 |
+
"|<EXTRA_TOKENS_102>|",
|
3526 |
+
"|<EXTRA_TOKENS_103>|",
|
3527 |
+
"|<EXTRA_TOKENS_104>|",
|
3528 |
+
"|<EXTRA_TOKENS_105>|",
|
3529 |
+
"|<EXTRA_TOKENS_106>|",
|
3530 |
+
"|<EXTRA_TOKENS_107>|",
|
3531 |
+
"|<EXTRA_TOKENS_108>|",
|
3532 |
+
"|<EXTRA_TOKENS_109>|",
|
3533 |
+
"|<EXTRA_TOKENS_110>|",
|
3534 |
+
"|<EXTRA_TOKENS_111>|",
|
3535 |
+
"|<EXTRA_TOKENS_112>|",
|
3536 |
+
"|<EXTRA_TOKENS_113>|",
|
3537 |
+
"|<EXTRA_TOKENS_114>|",
|
3538 |
+
"|<EXTRA_TOKENS_115>|",
|
3539 |
+
"|<EXTRA_TOKENS_116>|",
|
3540 |
+
"|<EXTRA_TOKENS_117>|",
|
3541 |
+
"|<EXTRA_TOKENS_118>|",
|
3542 |
+
"|<EXTRA_TOKENS_119>|",
|
3543 |
+
"|<EXTRA_TOKENS_120>|",
|
3544 |
+
"|<EXTRA_TOKENS_121>|",
|
3545 |
+
"|<EXTRA_TOKENS_122>|",
|
3546 |
+
"|<EXTRA_TOKENS_123>|",
|
3547 |
+
"|<EXTRA_TOKENS_124>|",
|
3548 |
+
"|<EXTRA_TOKENS_125>|",
|
3549 |
+
"|<EXTRA_TOKENS_126>|",
|
3550 |
+
"|<EXTRA_TOKENS_127>|",
|
3551 |
+
"|<EXTRA_TOKENS_128>|",
|
3552 |
+
"|<EXTRA_TOKENS_129>|",
|
3553 |
+
"|<EXTRA_TOKENS_130>|",
|
3554 |
+
"|<EXTRA_TOKENS_131>|",
|
3555 |
+
"|<EXTRA_TOKENS_132>|",
|
3556 |
+
"|<EXTRA_TOKENS_133>|",
|
3557 |
+
"|<EXTRA_TOKENS_134>|",
|
3558 |
+
"|<EXTRA_TOKENS_135>|",
|
3559 |
+
"|<EXTRA_TOKENS_136>|",
|
3560 |
+
"|<EXTRA_TOKENS_137>|",
|
3561 |
+
"|<EXTRA_TOKENS_138>|",
|
3562 |
+
"|<EXTRA_TOKENS_139>|",
|
3563 |
+
"|<EXTRA_TOKENS_140>|",
|
3564 |
+
"|<EXTRA_TOKENS_141>|",
|
3565 |
+
"|<EXTRA_TOKENS_142>|",
|
3566 |
+
"|<EXTRA_TOKENS_143>|",
|
3567 |
+
"|<EXTRA_TOKENS_144>|",
|
3568 |
+
"|<EXTRA_TOKENS_145>|",
|
3569 |
+
"|<EXTRA_TOKENS_146>|",
|
3570 |
+
"|<EXTRA_TOKENS_147>|",
|
3571 |
+
"|<EXTRA_TOKENS_148>|",
|
3572 |
+
"|<EXTRA_TOKENS_149>|",
|
3573 |
+
"|<EXTRA_TOKENS_150>|",
|
3574 |
+
"|<EXTRA_TOKENS_151>|",
|
3575 |
+
"|<EXTRA_TOKENS_152>|",
|
3576 |
+
"|<EXTRA_TOKENS_153>|",
|
3577 |
+
"|<EXTRA_TOKENS_154>|",
|
3578 |
+
"|<EXTRA_TOKENS_155>|",
|
3579 |
+
"|<EXTRA_TOKENS_156>|",
|
3580 |
+
"|<EXTRA_TOKENS_157>|",
|
3581 |
+
"|<EXTRA_TOKENS_158>|",
|
3582 |
+
"|<EXTRA_TOKENS_159>|",
|
3583 |
+
"|<EXTRA_TOKENS_160>|",
|
3584 |
+
"|<EXTRA_TOKENS_161>|",
|
3585 |
+
"|<EXTRA_TOKENS_162>|",
|
3586 |
+
"|<EXTRA_TOKENS_163>|",
|
3587 |
+
"|<EXTRA_TOKENS_164>|",
|
3588 |
+
"|<EXTRA_TOKENS_165>|",
|
3589 |
+
"|<EXTRA_TOKENS_166>|",
|
3590 |
+
"|<EXTRA_TOKENS_167>|",
|
3591 |
+
"|<EXTRA_TOKENS_168>|",
|
3592 |
+
"|<EXTRA_TOKENS_169>|",
|
3593 |
+
"|<EXTRA_TOKENS_170>|",
|
3594 |
+
"|<EXTRA_TOKENS_171>|",
|
3595 |
+
"|<EXTRA_TOKENS_172>|",
|
3596 |
+
"|<EXTRA_TOKENS_173>|",
|
3597 |
+
"|<EXTRA_TOKENS_174>|",
|
3598 |
+
"|<EXTRA_TOKENS_175>|",
|
3599 |
+
"|<EXTRA_TOKENS_176>|",
|
3600 |
+
"|<EXTRA_TOKENS_177>|",
|
3601 |
+
"|<EXTRA_TOKENS_178>|",
|
3602 |
+
"|<EXTRA_TOKENS_179>|",
|
3603 |
+
"|<EXTRA_TOKENS_180>|",
|
3604 |
+
"|<EXTRA_TOKENS_181>|",
|
3605 |
+
"|<EXTRA_TOKENS_182>|",
|
3606 |
+
"|<EXTRA_TOKENS_183>|",
|
3607 |
+
"|<EXTRA_TOKENS_184>|",
|
3608 |
+
"|<EXTRA_TOKENS_185>|",
|
3609 |
+
"|<EXTRA_TOKENS_186>|",
|
3610 |
+
"|<EXTRA_TOKENS_187>|",
|
3611 |
+
"|<EXTRA_TOKENS_188>|",
|
3612 |
+
"|<EXTRA_TOKENS_189>|",
|
3613 |
+
"|<EXTRA_TOKENS_190>|",
|
3614 |
+
"|<EXTRA_TOKENS_191>|",
|
3615 |
+
"|<EXTRA_TOKENS_192>|",
|
3616 |
+
"|<EXTRA_TOKENS_193>|",
|
3617 |
+
"|<EXTRA_TOKENS_194>|",
|
3618 |
+
"|<EXTRA_TOKENS_195>|",
|
3619 |
+
"|<EXTRA_TOKENS_196>|",
|
3620 |
+
"|<EXTRA_TOKENS_197>|",
|
3621 |
+
"|<EXTRA_TOKENS_198>|",
|
3622 |
+
"|<EXTRA_TOKENS_199>|",
|
3623 |
+
"|<EXTRA_TOKENS_200>|",
|
3624 |
+
"|<EXTRA_TOKENS_201>|",
|
3625 |
+
"|<EXTRA_TOKENS_202>|",
|
3626 |
+
"|<EXTRA_TOKENS_203>|",
|
3627 |
+
"|<EXTRA_TOKENS_204>|",
|
3628 |
+
"|<EXTRA_TOKENS_205>|",
|
3629 |
+
"|<EXTRA_TOKENS_206>|",
|
3630 |
+
"|<EXTRA_TOKENS_207>|",
|
3631 |
+
"|<EXTRA_TOKENS_208>|",
|
3632 |
+
"|<EXTRA_TOKENS_209>|",
|
3633 |
+
"|<EXTRA_TOKENS_210>|",
|
3634 |
+
"|<EXTRA_TOKENS_211>|",
|
3635 |
+
"|<EXTRA_TOKENS_212>|",
|
3636 |
+
"|<EXTRA_TOKENS_213>|",
|
3637 |
+
"|<EXTRA_TOKENS_214>|",
|
3638 |
+
"|<EXTRA_TOKENS_215>|",
|
3639 |
+
"|<EXTRA_TOKENS_216>|",
|
3640 |
+
"|<EXTRA_TOKENS_217>|",
|
3641 |
+
"|<EXTRA_TOKENS_218>|",
|
3642 |
+
"|<EXTRA_TOKENS_219>|",
|
3643 |
+
"|<EXTRA_TOKENS_220>|",
|
3644 |
+
"|<EXTRA_TOKENS_221>|",
|
3645 |
+
"|<EXTRA_TOKENS_222>|",
|
3646 |
+
"|<EXTRA_TOKENS_223>|",
|
3647 |
+
"|<EXTRA_TOKENS_224>|",
|
3648 |
+
"|<EXTRA_TOKENS_225>|",
|
3649 |
+
"|<EXTRA_TOKENS_226>|",
|
3650 |
+
"|<EXTRA_TOKENS_227>|",
|
3651 |
+
"|<EXTRA_TOKENS_228>|",
|
3652 |
+
"|<EXTRA_TOKENS_229>|",
|
3653 |
+
"|<EXTRA_TOKENS_230>|",
|
3654 |
+
"|<EXTRA_TOKENS_231>|",
|
3655 |
+
"|<EXTRA_TOKENS_232>|",
|
3656 |
+
"|<EXTRA_TOKENS_233>|",
|
3657 |
+
"|<EXTRA_TOKENS_234>|",
|
3658 |
+
"|<EXTRA_TOKENS_235>|",
|
3659 |
+
"|<EXTRA_TOKENS_236>|",
|
3660 |
+
"|<EXTRA_TOKENS_237>|",
|
3661 |
+
"|<EXTRA_TOKENS_238>|",
|
3662 |
+
"|<EXTRA_TOKENS_239>|",
|
3663 |
+
"|<EXTRA_TOKENS_240>|",
|
3664 |
+
"|<EXTRA_TOKENS_241>|",
|
3665 |
+
"|<EXTRA_TOKENS_242>|",
|
3666 |
+
"|<EXTRA_TOKENS_243>|",
|
3667 |
+
"|<EXTRA_TOKENS_244>|",
|
3668 |
+
"|<EXTRA_TOKENS_245>|",
|
3669 |
+
"|<EXTRA_TOKENS_246>|",
|
3670 |
+
"|<EXTRA_TOKENS_247>|",
|
3671 |
+
"|<EXTRA_TOKENS_248>|",
|
3672 |
+
"|<EXTRA_TOKENS_249>|",
|
3673 |
+
"|<EXTRA_TOKENS_250>|",
|
3674 |
+
"|<EXTRA_TOKENS_251>|",
|
3675 |
+
"|<EXTRA_TOKENS_252>|",
|
3676 |
+
"|<EXTRA_TOKENS_253>|",
|
3677 |
+
"|<EXTRA_TOKENS_254>|",
|
3678 |
+
"|<EXTRA_TOKENS_255>|",
|
3679 |
+
"|<EXTRA_TOKENS_256>|",
|
3680 |
+
"|<EXTRA_TOKENS_257>|",
|
3681 |
+
"|<EXTRA_TOKENS_258>|",
|
3682 |
+
"|<EXTRA_TOKENS_259>|",
|
3683 |
+
"|<EXTRA_TOKENS_260>|",
|
3684 |
+
"|<EXTRA_TOKENS_261>|",
|
3685 |
+
"|<EXTRA_TOKENS_262>|",
|
3686 |
+
"|<EXTRA_TOKENS_263>|",
|
3687 |
+
"|<EXTRA_TOKENS_264>|",
|
3688 |
+
"|<EXTRA_TOKENS_265>|",
|
3689 |
+
"|<EXTRA_TOKENS_266>|",
|
3690 |
+
"|<EXTRA_TOKENS_267>|",
|
3691 |
+
"|<EXTRA_TOKENS_268>|",
|
3692 |
+
"<im_start>",
|
3693 |
+
"<im_end>",
|
3694 |
+
"<im_patch>",
|
3695 |
+
"<im_col>",
|
3696 |
+
"<|image|>",
|
3697 |
+
"<im_low>"
|
3698 |
+
],
|
3699 |
+
"auto_map": {
|
3700 |
+
"AutoProcessor": "processing_molmoact.MolmoActProcessor"
|
3701 |
+
},
|
3702 |
+
"bos_token": "<|endoftext|>",
|
3703 |
+
"clean_up_tokenization_spaces": false,
|
3704 |
+
"eos_token": "<|endoftext|>",
|
3705 |
+
"errors": "replace",
|
3706 |
+
"extra_special_tokens": {},
|
3707 |
+
"model_max_length": 131072,
|
3708 |
+
"pad_token": "<|endoftext|>",
|
3709 |
+
"processor_class": "MolmoActProcessor",
|
3710 |
+
"split_special_tokens": false,
|
3711 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
3712 |
+
"unk_token": null
|
3713 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|