File size: 36,940 Bytes
aa3b580
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
"""Image processor class for MolmoAct"""
from typing import TYPE_CHECKING, Tuple, List, Optional, Union, Dict, Any
import numpy as np
import einops
import torch
import torchvision.transforms
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import convert_image_dtype

from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ChannelDimension,
    ImageInput,
    is_valid_image,
    valid_images,
    to_numpy_array,
)
from transformers.image_transforms import convert_to_rgb, to_channel_dimension_format
from transformers.processing_utils import ImagesKwargs
from transformers.image_processing_utils import BaseImageProcessor
from transformers.utils import logging
from transformers.feature_extraction_utils import BatchFeature
from transformers.utils import TensorType, logging


if TYPE_CHECKING:
    from transformers.utils import TensorType, logging


logger = logging.get_logger(__name__)


def is_multi_image(image: Union[ImageInput, List[ImageInput]]) -> bool:
    return isinstance(image, (list, tuple))


def make_batched_images(images) -> List[ImageInput]:
    """
    Accepts images in list or nested list format.

    Args:
        images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
            The input image.

    Returns:
        list: A list of images or a list of lists of images.
    """
    if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
        return images

    elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
        return images

    elif is_valid_image(images):
        return [images]

    raise ValueError(f"Could not make batched images from {images}")


def normalize_image(image: np.ndarray, normalize_mode: str) -> np.ndarray:
    if normalize_mode == "openai":
        image -= np.array(OPENAI_CLIP_MEAN, dtype=np.float32)[None, None, :]
        image /= np.array(OPENAI_CLIP_STD, dtype=np.float32)[None, None, :]
    elif normalize_mode == "siglip":
        image = np.asarray(-1.0, dtype=np.float32) + image * np.asarray(2.0, dtype=np.float32)
    elif normalize_mode == "dino":
        image -= np.array([0.485, 0.456, 0.406], dtype=np.float32)[None, None, :]
        image /= np.array([0.229, 0.224, 0.225], dtype=np.float32)[None, None, :]
    else:
        raise NotImplementedError(normalize_mode)
    return image


# Helper to ensure output_size is a 2-tuple of built-in Python ints
def _ensure_pyint_size2(size):
    """
    Ensure `size` is a 2-tuple of built-in Python ints.
    Accepts int, list/tuple, or numpy array of length 1 or 2.
    """
    import numpy as np
    # If it's an array-like, normalize to length-2 tuple
    if isinstance(size, (list, tuple, np.ndarray)):
        if len(size) == 2:
            return (int(size[0]), int(size[1]))
        elif len(size) == 1:
            s = int(size[0])
            return (s, s)
        else:
            # Fallback: try to interpret as square size using first element
            s = int(size[0])
            return (s, s)
    # Scalar → square size
    s = int(size)
    return (s, s)


def resize_and_pad(
    image,
    desired_output_size,
    resize_method="torch-bilinear",
    pad_value=0,
):
    """Resize an image while padding to preserve uts aspect ratio."""
    desired_output_size = _ensure_pyint_size2(desired_output_size)
    desired_height, desired_width = desired_output_size
    height, width = image.shape[:2]

    # Cast into float32 since the training code did this in float32 and it (very rarely) effects
    # the results after rounding.
    image_scale_y = np.array(desired_height, np.float32) / np.array(height, np.float32)
    image_scale_x = np.array(desired_width, np.float32) / np.array(width, np.float32)
    image_scale = min(image_scale_x, image_scale_y)
    scaled_height = int(np.array(height, np.float32) * image_scale)
    scaled_width = int(np.array(width, np.float32) * image_scale)

    if resize_method in ["torch-bilinear"]:
        image = torch.permute(torch.from_numpy(image), [2, 0, 1])
        image = convert_image_dtype(image)  # resize in float32 to match the training code
        mode = InterpolationMode.BILINEAR
        image = torchvision.transforms.Resize([scaled_height, scaled_width], mode, antialias=True)(image)
        image = torch.clip(image, 0.0, 1.0)
        image = torch.permute(image, [1, 2, 0]).numpy()
    else:
        raise NotImplementedError(resize_method)

    top_pad = (desired_height - scaled_height) // 2
    left_pad = (desired_width - scaled_width) // 2
    padding = [
        [top_pad, desired_height - scaled_height - top_pad],
        [left_pad, desired_width - scaled_width - left_pad],
        [0, 0]
    ]
    image_mask = np.pad(np.ones_like(image[:, :, 0], dtype=bool), padding[:2])
    image = np.pad(image, padding, constant_values=pad_value)
    return image, image_mask


def metaclip_resize(image, desired_output_size):
    desired_output_size = _ensure_pyint_size2(desired_output_size)
    image = torch.permute(torch.from_numpy(image), [2, 0, 1])
    if torch.is_floating_point(image):
        image = torchvision.transforms.Resize(
            desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
        image = torch.clip(image, 0.0, 1.0)
    else:
        assert image.dtype == torch.uint8, "Expected float images or uint8 images, but got {}".format(image.dtype)
        image = torchvision.transforms.Resize(
            desired_output_size, InterpolationMode.BICUBIC, antialias=True)(image)
        image = image.to(torch.float32)
        image = torch.clip(image, 0, 255)
        image = image / 255.0
    resized = torch.permute(image, [1, 2, 0]).numpy()
    image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)
    return resized, image_mask


def siglip_resize_and_pad(
    image: np.ndarray,
    desired_output_size: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
    desired_output_size = _ensure_pyint_size2(desired_output_size)
    if len(image.shape) == 3:
        is_video = False
        image = torch.permute(torch.from_numpy(image), [2, 0, 1])
    else:
        is_video = True
        image = torch.permute(torch.from_numpy(image), [0, 3, 1, 2])
    dtype = image.dtype
    if torch.is_floating_point(image):
        in_min = 0.0
        in_max = 1.0
        resized = torchvision.transforms.Resize(
            desired_output_size,
            InterpolationMode.BILINEAR,
            antialias=False,
        )(image)
        resized = torch.clip(resized, 0.0, 1.0).to(dtype)
    else:
        assert image.dtype == torch.uint8, "SigLIP expects float images or uint8 images, but got {}".format(image.dtype)
        in_min = 0.0
        in_max = 255.0
        resized = torchvision.transforms.Resize(
            desired_output_size,
            InterpolationMode.BILINEAR,
            antialias=False,
        )(image)
        resized = torch.clip(resized, 0, 255).to(dtype)

    resized = resized.to(torch.float32)
    resized = (resized - in_min) / (in_max - in_min)

    if is_video:
        resized = torch.permute(resized, [0, 2, 3, 1]).numpy()
        image_mask = None
    else:
        resized = torch.permute(resized, [1, 2, 0]).numpy()
        image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)

    return resized, image_mask


def dino_resize_and_pad(
    image: np.ndarray,
    desired_output_size: Tuple[int, int],
) -> Tuple[np.ndarray, np.ndarray]:
    desired_output_size = _ensure_pyint_size2(desired_output_size)
    image = torch.permute(torch.from_numpy(image), [2, 0, 1])
    dtype = image.dtype
    if torch.is_floating_point(image):
        resized = torchvision.transforms.Resize(
            desired_output_size,
            InterpolationMode.BICUBIC,
            antialias=True,
        )(image)
        resized = torch.clip(resized, 0.0, 1.0).to(torch.float32)
    else:
        assert image.dtype == torch.uint8, "DINOv2 expects float images or uint8 images, but got {}".format(image.dtype)
        resized = torchvision.transforms.Resize(
            desired_output_size,
            InterpolationMode.BICUBIC,
            antialias=True,
        )(image)
        resized = torch.clip(resized, 0, 255).to(torch.float32)
        resized = resized / 255.0

    resized = torch.permute(resized, [1, 2, 0]).numpy()
    image_mask = np.ones_like(resized[:, :, 0], dtype=np.bool_)

    return resized, image_mask


def resize_image(
    image: np.ndarray,
    resize_mode: str,
    output_size: Tuple[int, int],
    pad_value: float,
) -> Tuple[np.ndarray, np.ndarray]:
    if resize_mode == "siglip":
        return siglip_resize_and_pad(image, output_size)
    elif resize_mode == "dino":
        return dino_resize_and_pad(image, output_size)
    elif resize_mode == "metaclip":
        return metaclip_resize(image, output_size)
    else:
        resize = "torch-bilinear" if resize_mode == "default" else resize_mode
        return resize_and_pad(
            image, output_size, resize_method=resize, pad_value=pad_value,
        )


def select_tiling(h, w, patch_size, max_num_crops):
    """Divide in image of size [w, h] in up to max_num_patches of size patch_size"""
    original_size = np.stack([h, w])  # [1, 2]
    original_res = h * w
    tilings = []
    for i in range(1, max_num_crops + 1):
        for j in range(1, max_num_crops + 1):
            if i*j <= max_num_crops:
                tilings.append((i, j))
    # sort so argmin and argmax favour smaller tilings in the event of a tie
    tilings.sort(key=lambda x: (x[0]*x[1], x[0]))
    candidate_tilings = np.array(tilings, dtype=np.int32)  # [n_resolutions, 2]
    candidate_resolutions = candidate_tilings * patch_size  # [n_resolutions, 2]

    # How much we would need to scale the image to fit exactly in each tiling
    original_size = np.stack([h, w], dtype=np.float32)  # [1, 2]

    # The original size can be zero in rare cases if the image is smaller than the margin
    # In those cases letting the scale become infinite means the tiling is based on the
    # other side, or falls back to the smallest tiling
    with np.errstate(divide='ignore'):
        required_scale_d = candidate_resolutions.astype(np.float32) / original_size,
    required_scale = np.min(required_scale_d, axis=-1, keepdims=True)  # [n_resolutions, 1]
    if np.all(required_scale < 1):
        # We are forced to downscale, so try to minimize the amount of downscaling
        ix = np.argmax(required_scale)
    else:
        # Pick the resolution that required the least upscaling so that it most closely fits the image
        required_scale = np.where(required_scale < 1.0, 10e9, required_scale)
        ix = np.argmin(required_scale)
    return candidate_tilings[ix]


def build_resized_image(
    image: np.ndarray,
    resize_mode: str,
    normalized_mode: str,
    base_image_input_size: List[int],
    pad_value: float,
    image_patch_size: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    resized, resized_mask = resize_image(
        image, resize_mode, base_image_input_size, pad_value,
    )
    resized = normalize_image(resized, normalized_mode)
    if len(resized.shape) == 3:
        resized = np.expand_dims(resized, 0)
    resized_mask = np.expand_dims(resized_mask, 0)
    crop_patch_w = base_image_input_size[1] // image_patch_size
    crop_patch_h = base_image_input_size[0] // image_patch_size
    resize_idx = np.arange(crop_patch_w*crop_patch_h).reshape([crop_patch_h, crop_patch_w])
    return resized, resized_mask, resize_idx


def build_overlapping_crops(
    image: np.ndarray,
    resize_mode: str,
    normalize_mode: str,
    max_crops: int,
    overlap_margins: List[int],
    base_image_input_size: List[int],
    pad_value: float,
    image_patch_size: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
    """Decompose an image into a set of overlapping crops

    :return crop_arr: [n_crops, h, w, 3] The crops
    :return mask_arr: [n_crops, h, w] The padding masks
    :return patch_idx: [overlap_patch_h, overlap_patch_w] For each patch in the resized image
                        the crops were extracted from, what patch in `crop_arr` it corresponds to
    """
    original_image_h, original_image_w = image.shape[:2]
    crop_size = base_image_input_size[0]
    assert base_image_input_size[0] == base_image_input_size[1]

    left_margin, right_margin = overlap_margins
    total_margin_pixels = image_patch_size * (right_margin + left_margin)  # pixels removed per dim
    crop_patches = base_image_input_size[0] // image_patch_size  # patches per crop dim
    crop_window_patches = crop_patches - (right_margin + left_margin)  # usable patches
    crop_window_size = crop_window_patches * image_patch_size
    crop_patch_w = base_image_input_size[1] // image_patch_size
    crop_patch_h = base_image_input_size[0] // image_patch_size
    original_image_h, original_image_w = image.shape[:2]
    crop_size = base_image_input_size[0]

    # Decide how to tile the image, to account for the overlap margins we compute the tiling
    # as if we had an image without the margins and were using a crop size without the margins
    tiling = select_tiling(
        original_image_h - total_margin_pixels,
        original_image_w - total_margin_pixels,
        crop_window_size,
        max_crops,
    )

    src, img_mask = resize_image(
        image,
        resize_mode,
        [tiling[0]*crop_window_size+total_margin_pixels, tiling[1]*crop_window_size+total_margin_pixels],
        pad_value,
    )
    src = normalize_image(src, normalize_mode)

    # Now we have to split the image into crops, and track what patches came from
    # where in `patch_idx_arr`
    n_crops = tiling[0] * tiling[1]
    crop_arr = np.zeros([n_crops, crop_size, crop_size, 3], dtype=src.dtype)
    mask_arr = np.zeros([n_crops, crop_size, crop_size], dtype=img_mask.dtype)
    patch_idx_arr = np.zeros([n_crops, crop_patch_h, crop_patch_w], dtype=np.int32)
    on = 0
    on_crop = 0
    for i in range(tiling[0]):
        # Slide over `src` by `crop_window_size` steps, but extract crops of size `crops_size`
        # which results in overlapping crop windows
        y0 = i*crop_window_size
        for j in range(tiling[1]):
            x0 = j*crop_window_size
            crop_arr[on_crop] = src[y0:y0+crop_size, x0:x0+crop_size]
            mask_arr[on_crop] = img_mask[y0:y0+crop_size, x0:x0+crop_size]
            patch_idx = np.arange(crop_patch_w*crop_patch_h).reshape(crop_patch_h, crop_patch_w)
            patch_idx += on_crop * crop_patch_h * crop_patch_w

            # Mask out idx that are in the overlap region
            if i != 0:
                patch_idx[:left_margin, :] = -1
            if j != 0:
                patch_idx[:, :left_margin] = -1
            if i != tiling[0]-1:
                patch_idx[-right_margin:, :] = -1
            if j != tiling[1]-1:
                patch_idx[:, -right_margin:] = -1
            patch_idx_arr[on_crop] = patch_idx
            on_crop += 1

    # `patch_idx_arr` is ordered crop-by-crop, here we transpose `patch_idx_arr`
    # so it is ordered left-to-right order
    patch_idx_arr = np.reshape(
        patch_idx_arr,
        [tiling[0], tiling[1], crop_patch_h, crop_patch_w]
    )
    patch_idx_arr = np.transpose(patch_idx_arr, [0, 2, 1, 3])
    patch_idx_arr = np.reshape(patch_idx_arr, [-1])

    # Now get the parts not in the overlap region, so it should map each patch in `src`
    # to the correct patch it should come from in `crop_arr`
    patch_idx_arr = patch_idx_arr[patch_idx_arr >= 0].reshape(
        src.shape[0]//image_patch_size,
        src.shape[1]//image_patch_size,
    )
    return crop_arr, mask_arr, patch_idx_arr


def batch_pixels_to_patches(array: np.ndarray, patch_size: int) -> np.ndarray:
    """Reshape images of [n_images, h, w, 3] -> [n_images, n_patches, pixels_per_patch]"""
    if len(array.shape) == 3:
        n_crops, h, w = array.shape
        h_patches = h//patch_size
        w_patches = w//patch_size
        array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size])
        array = np.transpose(array, [0, 1, 3, 2, 4])
        array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size])
        return array
    else:
        n_crops, h, w, c = array.shape
        h_patches = h//patch_size
        w_patches = w//patch_size
        array = np.reshape(array, [n_crops, h_patches, patch_size, w_patches, patch_size, c])
        array = np.transpose(array, [0, 1, 3, 2, 4, 5])
        array = np.reshape(array, [n_crops, h_patches*w_patches, patch_size*patch_size*c])
        return array


def arange_for_pooling(
    idx_arr: np.ndarray,
    pool_h: int,
    pool_w: int,
) -> np.ndarray:
    h_pad = pool_h * ((idx_arr.shape[0] + pool_h - 1) // pool_h) - idx_arr.shape[0]
    w_pad = pool_w * ((idx_arr.shape[1] + pool_w - 1) // pool_w) - idx_arr.shape[1]
    idx_arr = np.pad(idx_arr, [[h_pad//2, (h_pad+1)//2], [w_pad//2, (w_pad+1)//2]],
                     mode='constant',constant_values=-1)
    return einops.rearrange(
        idx_arr, "(h dh) (w dw) -> h w (dh dw)", dh=pool_h, dw=pool_w)


def image_to_patches_and_grids(
    image: ImageInput,
    crop_mode: str,
    resize_mode: str,
    normalize_mode: str,
    max_crops: int,
    overlap_margins: List[int],
    base_image_input_size: List[int],
    pad_value: float,
    image_patch_size: int,
    image_pooling_w: int,
    image_pooling_h: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    """
    :return image_grids, the shape of each (low-res, high-res) image after pooling
    :return crops, the image crops to processes with the ViT
    :return mask, the padding mask for each crop
    :return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
                                patches in `crops` to pool for that token, masked with -1
    """
    if isinstance(base_image_input_size, int):
        base_image_input_size = (base_image_input_size, base_image_input_size)
    
    base_image_input_d = image_patch_size
    pooling_w = image_pooling_w
    pooling_h = image_pooling_h
    crop_patch_w = base_image_input_size[1] // base_image_input_d
    crop_patch_h = base_image_input_size[0] // base_image_input_d

    if crop_mode == "resize":
        resized, resized_mask, resize_idx = build_resized_image(
            image,
            resize_mode,
            normalize_mode,
            base_image_input_size,
            pad_value,
            image_patch_size
        )
        pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
        h, w = pooling_idx.shape[:2]
        pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
        image_grid = [np.array([h, w])]
        return (
            np.stack(image_grid, 0),
            batch_pixels_to_patches(resized, image_patch_size),
            batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
            pooling_idx,
        )
    
    if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
        crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
            image,
            resize_mode,
            normalize_mode,
            max_crops,
            overlap_margins,
            base_image_input_size,
            pad_value,
            image_patch_size,
        )
        pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
        h, w = pooling_idx.shape[:2]
        pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
        image_grid = [np.array([h, w])]

        if crop_mode == "overlap-and-resize":
            crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
            mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
            return np.stack(image_grid, 0), crop_arr, mask_arr, pooling_idx
        
        # Finally do the same for the global image
        resized, resized_mask, resize_idx = build_resized_image(
            image,
            resize_mode,
            normalize_mode,
            base_image_input_size,
            pad_value,
            image_patch_size
        )
        crop_arr = np.concatenate([resized, crop_arr], 0)

        mask_arr = np.concatenate([resized_mask, mask_arr], 0)

        resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
        h, w = resize_idx.shape[:2]
        resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])

        # Global image goes first, so the order of patches in previous crops gets increased
        pooling_idx = np.where(
            pooling_idx >= 0,
            pooling_idx + crop_patch_h*crop_patch_w,
            -1
        )
        pooling_idx = np.concatenate([resize_idx, pooling_idx])
        image_grid = [
            np.array([h, w]),
        ] + image_grid

        mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
        return (
            np.stack(image_grid, 0),
            batch_pixels_to_patches(crop_arr, image_patch_size),
            mask_arr,
            pooling_idx
        )
    else:
        raise NotImplementedError(crop_mode)


def image_to_patches_and_tokens(
    image: ImageInput,
    crop_mode: str,
    use_col_tokens: bool,
    resize_mode: str,
    normalize_mode: str,
    max_crops: int,
    overlap_margins: List[int],
    base_image_input_size: List[int],
    pad_value: float,
    image_patch_size: int,
    image_pooling_w: int,
    image_pooling_h: int,
    image_patch_token_id: int,
    image_col_token_id: int,
    image_start_token_id: int,
    image_end_token_id: int,
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
    """
    :return image_tokens, the token IDS for this image, including special tokens
    :return crops, the image crops to processes with the ViT
    :return mask, the padding mask for each crop
    :return pooled_patch_idx, for each patch_id tokens in `image_tokens`, the indices of the
                                patches in `crops` to pool for that token, masked with -1
    """

    if isinstance(base_image_input_size, int):
        base_image_input_size = (base_image_input_size, base_image_input_size)
    
    base_image_input_d = image_patch_size
    pooling_w = image_pooling_w
    pooling_h = image_pooling_h
    patch_id = image_patch_token_id
    col_id = image_col_token_id
    start_id = image_start_token_id
    end_id = image_end_token_id
    crop_patch_w = base_image_input_size[1] // base_image_input_d
    crop_patch_h = base_image_input_size[0] // base_image_input_d

    if crop_mode == "resize":
        resized, resized_mask, resize_idx = build_resized_image(
            image,
            resize_mode,
            normalize_mode,
            base_image_input_size,
            pad_value,
            image_patch_size
        )
        pooling_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
        h, w = pooling_idx.shape[:2]
        pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])
        per_row = np.full(
            (w,),
            patch_id,
            dtype=np.int32
        )
        if use_col_tokens:
            per_row = np.concatenate([per_row, [col_id]], 0)
        extra_tokens = np.tile(per_row, [h])
        joint = [
            [start_id],
            extra_tokens,
            [end_id],
        ]
        return (
            np.concatenate(joint, 0),
            batch_pixels_to_patches(resized, image_patch_size),
            batch_pixels_to_patches(resized_mask, image_patch_size).mean(-1),
            pooling_idx,
        )
    
    if crop_mode in ["overlap-and-resize-c2", "overlap-and-resize"]:
        crop_arr, mask_arr, patch_idx_arr = build_overlapping_crops(
            image,
            resize_mode,
            normalize_mode,
            max_crops,
            overlap_margins,
            base_image_input_size,
            pad_value,
            image_patch_size,
        )
        pooling_idx = arange_for_pooling(patch_idx_arr, pooling_h, pooling_w)
        h, w = pooling_idx.shape[:2]
        pooling_idx = pooling_idx.reshape([-1, pooling_h*pooling_w])

        # Now build the output tokens
        per_row = np.full(w, patch_id, dtype=np.int32)
        if use_col_tokens:
            per_row = np.concatenate([per_row, [col_id]], 0)
        joint = np.tile(per_row, [h])
        joint = [
            [start_id],
            joint,
            [end_id]
        ]

        if crop_mode == "overlap-and-resize":
            crop_arr = batch_pixels_to_patches(crop_arr, image_patch_size)
            mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
            return np.concatenate(joint, 0), crop_arr, mask_arr, pooling_idx
        
        # Finally do the same for the global image
        resized, resized_mask, resize_idx = build_resized_image(
            image,
            resize_mode,
            normalize_mode,
            base_image_input_size,
            pad_value,
            image_patch_size
        )
        crop_arr = np.concatenate([resized, crop_arr], 0)

        mask_arr = np.concatenate([resized_mask, mask_arr], 0)

        resize_idx = arange_for_pooling(resize_idx, pooling_h, pooling_w)
        h, w = resize_idx.shape[:2]
        resize_idx = resize_idx.reshape([-1, pooling_h*pooling_w])

        # Global image goes first, so the order of patches in previous crops gets increased
        pooling_idx = np.where(
            pooling_idx >= 0,
            pooling_idx + crop_patch_h*crop_patch_w,
            -1
        )
        pooling_idx = np.concatenate([resize_idx, pooling_idx])

        per_row = np.full(
            (w,),
            patch_id,
            dtype=np.int32
        )
        if use_col_tokens:
            per_row = np.concatenate([per_row, [col_id]], 0)
        extra_tokens = np.tile(per_row, [h])
        joint = [
            [start_id],
            extra_tokens,
            [end_id],
        ] + joint
        mask_arr = batch_pixels_to_patches(mask_arr, image_patch_size).astype(np.float32).mean(axis=-1)
        return (
            np.concatenate(joint, 0),
            batch_pixels_to_patches(crop_arr, image_patch_size),
            mask_arr,
            pooling_idx
        )
    else:
        raise NotImplementedError(crop_mode)


class MolmoActImagesKwargs(ImagesKwargs, total=False):
    crop_mode: Optional[str]
    resize_mode: Optional[str]
    normalize_mode: Optional[str]
    max_crops: Optional[int]
    max_multi_image_crops: Optional[int]
    overlap_margins: Optional[List[int]]
    base_image_input_size: Optional[List[int]]
    pad_value: Optional[float]
    image_patch_size: Optional[int]
    image_pooling_w: Optional[int]
    image_pooling_h: Optional[int]


class MolmoActImageProcessor(BaseImageProcessor):

    model_input_names = ["images", "pooled_patches_idx", "image_masks"]

    def __init__(
        self,
        crop_mode: str = "overlap-and-resize-c2",
        resize_mode: str = "siglip",
        normalize_mode: str = "siglip",
        max_crops: int = 8,
        max_multi_image_crops: int = 4,
        overlap_margins: List[int] = [4, 4],
        base_image_input_size: List[int] = (378, 378),
        pad_value: float = 0.0,
        image_patch_size: int = 14,
        image_pooling_w: int = 2,
        image_pooling_h: int = 2,
        do_convert_rgb: bool = True,
        do_pad: Optional[bool] = True,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        self.crop_mode = crop_mode
        self.resize_mode = resize_mode
        self.normalize_mode = normalize_mode
        self.overlap_margins = overlap_margins
        self.max_crops = max_crops
        self.max_multi_image_crops = max_multi_image_crops
        self.overlap_margins = overlap_margins
        self.base_image_input_size = base_image_input_size
        self.pad_value = pad_value
        self.image_patch_size = image_patch_size
        self.image_pooling_w = image_pooling_w
        self.image_pooling_h = image_pooling_h
        self.do_convert_rgb = do_convert_rgb
        self.do_pad = do_pad
    
    def to_channel_dimension_last(
        self,
        images: List[ImageInput],
    ) -> List[ImageInput]:
        """
        Convert images to channel dimension last.
        """
        new_images = []
        for image in images:
            if is_multi_image(image):
                new_images.append([to_channel_dimension_format(img, ChannelDimension.LAST) for img in image])
            else:
                new_images.append(to_channel_dimension_format(image, ChannelDimension.LAST))
        return new_images
    
    def to_numpy_array(
        self,
        images: List[ImageInput],
    ) -> List[np.ndarray]:
        """
        Convert images to numpy array.
        """
        new_images = []
        for image in images:
            if is_multi_image(image):
                new_images.append([to_numpy_array(img) for img in image])
            else:
                new_images.append(to_numpy_array(image))
        return new_images
    
    def to_rgb(
        self,
        images: List[ImageInput],
    ) -> List[ImageInput]:
        """
        Convert images to RGB.
        """
        new_images = []
        for image in images:
            if is_multi_image(image):
                new_images.append([convert_to_rgb(img) for img in image])
            else:
                new_images.append(convert_to_rgb(image))
        return new_images
    
    def pad_arrays(self, arrays: List[np.ndarray], pad_value: float = -1) -> np.ndarray:
        max_len = max(arr.shape[0] for arr in arrays)
        padded_arr = np.full(
            [len(arrays), max_len] + list(arrays[0].shape[1:]), pad_value, dtype=arrays[0].dtype
        )
        for ix, arr in enumerate(arrays):
            padded_arr[ix, :len(arr)] = arr[:max_len]
        return padded_arr

    def pad_for_batching(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Pad the data for batching.
        """
        images = self.pad_arrays(data["images"])
        pooled_patches_idx = self.pad_arrays(data["pooled_patches_idx"])
        image_masks = self.pad_arrays(data["image_masks"])
        image_grids = self.pad_arrays(data["image_grids"])
        new_data = dict(
            images=images,
            pooled_patches_idx=pooled_patches_idx,
            image_masks=image_masks,
            image_grids=image_grids,
        )
        return new_data
    
    def preprocess(
        self,
        images: Union[ImageInput, List[ImageInput]],
        crop_mode: Optional[str] = None,
        resize_mode: Optional[str] = None,
        normalize_mode: Optional[str] = None,
        max_crops: Optional[int] = None,
        max_multi_image_crops: Optional[int] = None,
        overlap_margins: Optional[List[int]] = None,
        base_image_input_size: Optional[List[int]] = None,
        pad_value: Optional[float] = None,
        image_patch_size: Optional[int] = None,
        image_pooling_w: Optional[int] = None,
        image_pooling_h: Optional[int] = None,
        do_convert_rgb: Optional[bool] = None,
        do_pad: Optional[bool] = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        **kwargs,
    ) -> BatchFeature:
        """
        Preprocess an image for the model.
        Args:
            image: The image to preprocess.
            crop_mode: The crop mode to use. If None, use the default crop mode.
            resize_mode: The resize mode to use. If None, use the default resize mode.
            normalize_mode: The normalization mode to use. If None, use the default normalization mode.
            max_crops: The maximum number of crops to use. If None, use the default value.
            max_multi_image_crops: The maximum number of crops to use for multi-image inputs.
            overlap_margins: The overlap margins to use. If None, use the default values.
            base_image_input_size: The base image input size to use. If None, use the default size.
            pad_value: The padding value to use. If None, use the default value.
            image_patch_size: The size of the image patches. If None, use the default size.
            image_pooling_h: The height of the image pooling. If None, use the default height.
            image_pooling_w: The width of the image pooling. If None, use the default width.
            do_convert_rgb: Whether to convert the image to RGB. If None, use the default value.
            do_pad: Whether to pad image features. If None, use the default value.

        Returns:
            A tuple containing:
                - The image grids
                - The preprocessed images
                - The padding masks
                - The pooling indices
        """
        images = make_batched_images(images)

        if not valid_images(images):
            raise ValueError("Invalid image input")
        
        crop_mode = crop_mode or self.crop_mode
        normalize_mode = normalize_mode or self.normalize_mode
        resize_mode = resize_mode or self.resize_mode
        max_crops = max_crops or self.max_crops
        max_multi_image_crops = max_multi_image_crops or self.max_multi_image_crops
        overlap_margins = overlap_margins or self.overlap_margins
        base_image_input_size = base_image_input_size or self.base_image_input_size
        pad_value = pad_value or self.pad_value
        image_patch_size = image_patch_size or self.image_patch_size
        image_pooling_w = image_pooling_w or self.image_pooling_w
        image_pooling_h = image_pooling_h or self.image_pooling_h
        do_convert_rgb = do_convert_rgb or self.do_convert_rgb
        do_pad = do_pad or self.do_pad

        if do_convert_rgb:
            images = self.to_rgb(images)

        # All transformations expect numpy arrays.
        images = self.to_numpy_array(images)

        # All transformations expect channel dimension last.
        images = self.to_channel_dimension_last(images)

        batch_image_grids = []
        batch_crops = []
        batch_crop_masks = []
        batch_pooled_patches_idx = []

        for image in images:
            if is_multi_image(image):
                all_image_grids = []
                all_crops = []
                all_crop_masks = []
                pooled_patches_idx = []
                for img in image:
                    image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
                        img,
                        crop_mode,
                        resize_mode,
                        normalize_mode,
                        max_multi_image_crops,
                        overlap_margins,
                        base_image_input_size,
                        pad_value,
                        image_patch_size,
                        image_pooling_w,
                        image_pooling_h,
                    )
                    pooled_patches_idx.append(pooled_idx + sum(np.prod(x.shape[:2]) for x in all_crops))
                    all_crops.append(crops)
                    all_crop_masks.append(img_mask)
                    all_image_grids.append(image_grid)
                all_image_grids = np.concatenate(all_image_grids, 0)
                all_crops = np.concatenate(all_crops, 0)
                all_crop_masks = np.concatenate(all_crop_masks, 0)
                pooled_patches_idx = np.concatenate(pooled_patches_idx, 0)

                batch_image_grids.append(all_image_grids)
                batch_crops.append(all_crops)
                batch_crop_masks.append(all_crop_masks)
                batch_pooled_patches_idx.append(pooled_patches_idx)
            else:
                image_grid, crops, img_mask, pooled_idx = image_to_patches_and_grids(
                    image,
                    crop_mode,
                    resize_mode,
                    normalize_mode,
                    max_crops,
                    overlap_margins,
                    base_image_input_size,
                    pad_value,
                    image_patch_size,
                    image_pooling_w,
                    image_pooling_h,
                )
                batch_image_grids.append(image_grid)
                batch_crops.append(crops)
                batch_crop_masks.append(img_mask)
                batch_pooled_patches_idx.append(pooled_idx)
        
        data =dict(
            images=batch_crops,
            pooled_patches_idx=batch_pooled_patches_idx,
            image_masks=batch_crop_masks,
            image_grids=batch_image_grids,
        )
        
        if do_pad:
            data = self.pad_for_batching(data)

        return BatchFeature(data, tensor_type=return_tensors)


MolmoActImageProcessor.register_for_auto_class()