File size: 17,826 Bytes
aa3b580 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
"""
Processor class for MolmoAct.
"""
from typing import List, Optional, Union, Dict, Tuple
import PIL
from PIL import ImageFile, ImageOps
try:
from typing import Unpack
except ImportError:
from typing_extensions import Unpack
import numpy as np
import torch
from transformers.image_utils import ImageInput
from transformers.processing_utils import (
ProcessingKwargs,
ProcessorMixin,
)
from transformers.feature_extraction_utils import BatchFeature
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput
from transformers.utils import logging
from transformers import AutoTokenizer
from .image_processing_molmoact import MolmoActImagesKwargs, MolmoActImageProcessor
logger = logging.get_logger(__name__)
# Special tokens, these should be present in any tokenizer we use since the preprocessor uses them
IMAGE_PATCH_TOKEN = f"<im_patch>" # Where to insert high-res tokens
IMAGE_LOW_RES_TOKEN = f"<im_low>" # Where to insert low-res tokens
IM_START_TOKEN = f"<im_start>"
IM_END_TOKEN = f"<im_end>"
IM_COL_TOKEN = f"<im_col>"
IMAGE_PROMPT = "<|image|>"
EXTRA_TOKENS = (IM_START_TOKEN, IM_END_TOKEN, IMAGE_PATCH_TOKEN,
IM_COL_TOKEN, IMAGE_PROMPT, IMAGE_LOW_RES_TOKEN)
DEMO_STYLES = [
"point_count",
"pointing",
"cosyn_point",
"user_qa",
"long_caption",
"short_caption",
"video_long_caption",
"video_short_caption",
"correction_qa",
"demo",
"android_control",
]
def setup_pil():
PIL.Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
def get_special_token_ids(tokenizer: AutoTokenizer) -> Dict[str, int]:
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False)
assert len(ids) == len(EXTRA_TOKENS)
return {k: i for k, i in zip(EXTRA_TOKENS, ids)}
def load_image(image: Union[PIL.Image.Image, np.ndarray]) -> np.ndarray:
"""Load image"""
setup_pil()
if isinstance(image, PIL.Image.Image):
image = image.convert("RGB")
image = ImageOps.exif_transpose(image)
return np.array(image)
elif isinstance(image, np.ndarray):
assert len(image.shape) == 3, "Image should have 3 dimensions"
assert image.shape[2] == 3, "Image should have 3 channels"
assert image.dtype == np.uint8, "Image should have uint8 type"
return image
else:
raise ValueError("Image should be PIL.Image or np.ndarray")
class MolmoActProcessorKwargs(ProcessingKwargs, total=False):
"""MolmoAct processor kwargs"""
images_kwargs: MolmoActImagesKwargs
_defaults = {
"text_kwargs": {
"padding": False,
},
}
class MolmoActProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
optional_attributes = [
"chat_template",
"prompt_templates",
"message_format",
"system_prompt",
"style",
"always_start_with_space",
"default_inference_len",
"use_col_tokens",
"image_padding_mask",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(
self,
image_processor: MolmoActImageProcessor = None,
tokenizer: AutoTokenizer = None,
chat_template: Optional[str] = None,
prompt_templates: Optional[str] = "uber_model",
message_format: Optional[str] = "role",
system_prompt: Optional[str] = "demo_or_style",
style: Optional[str] = "demo",
always_start_with_space: Optional[bool] = False,
default_inference_len: Optional[int] = 65,
use_col_tokens: Optional[bool] = True,
image_padding_mask: bool = False,
**kwargs
) -> None:
if tokenizer.padding_side != "left":
logger.warning(f"Tokenizer {tokenizer.name_or_path} is not left-padded, padding side will be set to left")
tokenizer.padding_side = "left" # type: ignore
super().__init__(
image_processor,
tokenizer,
chat_template=chat_template,
prompt_templates=prompt_templates,
message_format=message_format,
system_prompt=system_prompt,
style=style,
always_start_with_space=always_start_with_space,
default_inference_len=default_inference_len,
use_col_tokens=use_col_tokens,
image_padding_mask=image_padding_mask,
)
self._special_tokens = None
@property
def special_token_ids(self):
if self._special_tokens is None:
self._special_tokens = get_special_token_ids(self.tokenizer)
return self._special_tokens
def get_user_prompt(self, text: TextInput) -> str:
"""Get user prompt"""
if self.prompt_templates == "none":
return ""
elif self.prompt_templates == "uber_model":
return text
else:
raise NotImplementedError(self.prompt_templates)
def get_prefix(self) -> str:
"""Get prefix"""
if self.system_prompt == "style_and_length": # captioner
assert self.style in ["long_caption"]
style = self.style
n = None if self.default_inference_len is None else str(self.default_inference_len)
if n is not None and len(n) > 0: # allow empty string to signal unconditioned
prefix = style + " " + n + ":"
else:
prefix = style + " :"
elif self.system_prompt == "demo_or_style": # demo model
if self.style in DEMO_STYLES:
prefix = ""
else:
prefix = self.style + ":"
else:
raise NotImplementedError(self.system_prompt)
return prefix
def format_prompt(self, prompt: str) -> str:
"""Format prompt"""
if self.message_format == "none":
pass
elif self.message_format == "role":
prompt = "User: " + prompt + " Assistant:"
else:
raise NotImplementedError(self.message_format)
if self.always_start_with_space:
prompt = " " + prompt
return prompt
def get_prompt(self, text: TextInput) -> str:
prompt = self.get_user_prompt(text)
if self.system_prompt and self.system_prompt != "none":
prefix = self.get_prefix()
if len(prefix) > 0 and len(prompt) > 0:
prompt = prefix + " " + prompt
elif len(prefix) > 0:
prompt = prefix
prompt = self.format_prompt(prompt)
return prompt
def get_image_tokens(self, image_grid: np.ndarray):
joint = []
for h, w in image_grid:
per_row = np.full(w, IMAGE_PATCH_TOKEN)
if self.use_col_tokens:
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0)
extra_tokens = np.tile(per_row, [h])
joint += [
[IM_START_TOKEN],
extra_tokens,
[IM_END_TOKEN],
]
return np.concatenate(joint)
def insert_bos_numpy(
self,
input_ids: np.ndarray,
attention_mask: np.ndarray,
bos_token_id: int,
pad_token_id: int,
):
"""
Args:
input_ids: [B, S] array with left padding
attention_mask: [B, S] array (0 for pad, 1 for valid)
bos_token_id: int
pad_token_id: int
Returns:
input_ids_out: [B, S] or [B, S+1] array with bos inserted if needed
attention_mask_out: same shape as input_ids_out
"""
need_to_expand = len(input_ids.shape) == 1
if need_to_expand:
input_ids = input_ids[None, :]
attention_mask = attention_mask[None, :]
B, S = input_ids.shape
# Handle zero-length sequence
if S == 0:
new_input_ids = np.full((B, 1), bos_token_id, dtype=input_ids.dtype)
new_attention_mask = np.ones((B, 1), dtype=attention_mask.dtype)
if need_to_expand:
new_input_ids = new_input_ids[0]
new_attention_mask = new_attention_mask[0]
return new_input_ids, new_attention_mask
first_valid_index = (attention_mask == 1).argmax(axis=-1) # [B]
bos_already_present = np.all(input_ids[np.arange(B), first_valid_index] == bos_token_id)
if bos_already_present:
if need_to_expand:
input_ids = input_ids[0]
attention_mask = attention_mask[0]
return input_ids, attention_mask
else:
new_input_ids = np.full((B, S+1), pad_token_id, dtype=input_ids.dtype)
new_attention_mask = np.zeros((B, S+1), dtype=attention_mask.dtype)
src_idx = np.tile(np.arange(S), (B, 1)) # [B, S]
valid_mask = src_idx >= first_valid_index[:, None] # [B, S]
tgt_idx = src_idx + 1 # shit right
batch_idx = np.tile(np.arange(B)[:, None], (1, S)) # [B, S]
# flatten valid_positions
flat_vals = input_ids[valid_mask]
flat_batch = batch_idx[valid_mask]
flat_tgt = tgt_idx[valid_mask]
new_input_ids[flat_batch, flat_tgt] = flat_vals
new_attention_mask[flat_batch, flat_tgt] = 1
insert_pos = first_valid_index
new_input_ids[np.arange(B), insert_pos] = bos_token_id
new_attention_mask[np.arange(B), insert_pos] = 1
if need_to_expand:
new_input_ids = new_input_ids[0]
new_attention_mask = new_attention_mask[0]
return new_input_ids, new_attention_mask
def insert_bos_torch(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
bos_token_id: int,
pad_token_id: int,
):
"""
Args:
input_ids: [B, S] tensor with left padding
attention_mask: [B, S] tensor (0 for pad, 1 for valid)
bos_token_id: int
pad_token_id: int
Returns:
input_ids_out: [B, S] or [B, S+1] tensor with bos inserted if needed
attention_mask_out: same shape as input_ids_out
"""
B, S = input_ids.shape
device = input_ids.device
# Handle zero-length sequence
if S == 0:
new_input_ids = torch.full((B, 1), bos_token_id, dtype=input_ids.dtype, device=device)
new_attention_mask = torch.ones((B, 1), dtype=attention_mask.dtype, device=device)
return new_input_ids, new_attention_mask
first_valid_index = (attention_mask == 1).long().argmax(dim=-1) # [B]
bos_already_present = (input_ids[torch.arange(B), first_valid_index] == bos_token_id).all()
if bos_already_present:
return input_ids, attention_mask
else:
new_input_ids = torch.full((B, S+1), pad_token_id, dtype=input_ids.dtype, device=device)
new_attention_mask = torch.zeros((B, S+1), dtype=attention_mask.dtype, device=device)
src_idx = torch.arange(S, device=device).expand(B, S) # [B, S]
valid_mask = src_idx >= first_valid_index.unsqueeze(1) # [B, S]
tgt_idx = src_idx + 1 # shift right
batch_idx = torch.arange(B, device=device).unsqueeze(1).expand_as(src_idx)
flat_vals = input_ids[valid_mask]
flat_batch = batch_idx[valid_mask]
flat_tgt = tgt_idx[valid_mask]
new_input_ids[flat_batch, flat_tgt] = flat_vals
new_attention_mask[flat_batch, flat_tgt] = 1
insert_pos = first_valid_index
batch_indices = torch.arange(B, device=device)
new_input_ids[batch_indices, insert_pos] = bos_token_id
new_attention_mask[batch_indices, insert_pos] = 1
return new_input_ids, new_attention_mask
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: Union[ImageInput, List[ImageInput]] = None,
apply_chat_template: bool = False,
**kwargs: Unpack[MolmoActProcessorKwargs],
) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least one of `images` or `text`.")
output_kwargs = self._merge_kwargs(
MolmoActProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, (list, tuple)) and isinstance(images, (list, tuple)):
if len(text) != len(images):
raise ValueError("You have to provide the same number of text and images")
if len(text) > 1 and not output_kwargs["text_kwargs"].get("padding", False):
raise ValueError("You have to specify padding when you have multiple text inputs")
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
image_inputs = {}
if apply_chat_template:
text = [self.get_prompt(t) for t in text]
prompt_strings = text
if image_inputs.get("images", None) is not None:
prompt_strings = []
for idx, image_grids in enumerate(image_inputs.pop("image_grids")):
if isinstance(image_grids, torch.Tensor):
image_grids = image_grids.cpu().numpy()
if isinstance(images, (list, tuple)) and isinstance(images[idx], (list, tuple)):
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
offset = 2 if len(images[idx]) < len(image_grids) else 1 # whether to use both low and high res images
all_image_strings = []
for i in range(0, len(image_grids), offset):
image_grids_i = image_grids[i:i+offset]
image_tokens = self.get_image_tokens(image_grids_i)
img_ix = i // offset
all_image_strings.append(f"Image {img_ix + 1}" + "".join(image_tokens))
image_string = "".join(all_image_strings)
prompt_strings.append(image_string + text[idx])
else:
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)]
assert len(image_grids) in [1, 2], "Only one or two crops are supported for single image inputs"
image_tokens = self.get_image_tokens(image_grids)
image_string = "".join(image_tokens)
prompt_strings.append(image_string + text[idx])
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
input_ids = text_inputs["input_ids"]
attention_mask = text_inputs["attention_mask"]
is_list = isinstance(input_ids, (list, tuple))
if is_list:
input_ids = np.array(input_ids)
attention_mask = np.array(attention_mask)
use_numpy = isinstance(attention_mask, np.ndarray)
if use_numpy and np.issubdtype(input_ids.dtype, np.floating):
input_ids = input_ids.astype(np.int64)
attention_mask = attention_mask.astype(np.int64)
elif not use_numpy and torch.is_floating_point(input_ids):
input_ids = input_ids.to(torch.int64)
attention_mask = attention_mask.to(torch.int64)
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id
if use_numpy:
input_ids, attention_mask = self.insert_bos_numpy(
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
)
else:
input_ids, attention_mask = self.insert_bos_torch(
input_ids, attention_mask, bos, self.tokenizer.pad_token_id
)
if is_list:
input_ids = input_ids.tolist() # type: ignore
attention_mask = attention_mask.tolist() # type: ignore
text_inputs["input_ids"] = input_ids
text_inputs["attention_mask"] = attention_mask
if kwargs.get("device", None) is not None:
text_inputs = text_inputs.to(device=kwargs.get("device"), non_blocking=True)
# there is no bos token in Qwen tokenizer
return BatchFeature(
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"]
)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
MolmoActProcessor.register_for_auto_class() |