|
""" |
|
Processor class for MolmoAct. |
|
""" |
|
from typing import List, Optional, Union, Dict, Tuple |
|
|
|
import PIL |
|
from PIL import ImageFile, ImageOps |
|
|
|
try: |
|
from typing import Unpack |
|
except ImportError: |
|
from typing_extensions import Unpack |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ( |
|
ProcessingKwargs, |
|
ProcessorMixin, |
|
) |
|
from transformers.feature_extraction_utils import BatchFeature |
|
from transformers.tokenization_utils_base import TextInput, PreTokenizedInput |
|
from transformers.utils import logging |
|
|
|
from transformers import AutoTokenizer |
|
from .image_processing_molmoact import MolmoActImagesKwargs, MolmoActImageProcessor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
IMAGE_PATCH_TOKEN = f"<im_patch>" |
|
IMAGE_LOW_RES_TOKEN = f"<im_low>" |
|
IM_START_TOKEN = f"<im_start>" |
|
IM_END_TOKEN = f"<im_end>" |
|
IM_COL_TOKEN = f"<im_col>" |
|
IMAGE_PROMPT = "<|image|>" |
|
|
|
EXTRA_TOKENS = (IM_START_TOKEN, IM_END_TOKEN, IMAGE_PATCH_TOKEN, |
|
IM_COL_TOKEN, IMAGE_PROMPT, IMAGE_LOW_RES_TOKEN) |
|
|
|
|
|
DEMO_STYLES = [ |
|
"point_count", |
|
"pointing", |
|
"cosyn_point", |
|
"user_qa", |
|
"long_caption", |
|
"short_caption", |
|
"video_long_caption", |
|
"video_short_caption", |
|
"correction_qa", |
|
"demo", |
|
"android_control", |
|
] |
|
|
|
|
|
def setup_pil(): |
|
PIL.Image.MAX_IMAGE_PIXELS = None |
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
|
|
def get_special_token_ids(tokenizer: AutoTokenizer) -> Dict[str, int]: |
|
ids = tokenizer.encode("".join(EXTRA_TOKENS), add_special_tokens=False) |
|
assert len(ids) == len(EXTRA_TOKENS) |
|
return {k: i for k, i in zip(EXTRA_TOKENS, ids)} |
|
|
|
|
|
def load_image(image: Union[PIL.Image.Image, np.ndarray]) -> np.ndarray: |
|
"""Load image""" |
|
setup_pil() |
|
if isinstance(image, PIL.Image.Image): |
|
image = image.convert("RGB") |
|
image = ImageOps.exif_transpose(image) |
|
return np.array(image) |
|
elif isinstance(image, np.ndarray): |
|
assert len(image.shape) == 3, "Image should have 3 dimensions" |
|
assert image.shape[2] == 3, "Image should have 3 channels" |
|
assert image.dtype == np.uint8, "Image should have uint8 type" |
|
return image |
|
else: |
|
raise ValueError("Image should be PIL.Image or np.ndarray") |
|
|
|
|
|
class MolmoActProcessorKwargs(ProcessingKwargs, total=False): |
|
"""MolmoAct processor kwargs""" |
|
images_kwargs: MolmoActImagesKwargs |
|
_defaults = { |
|
"text_kwargs": { |
|
"padding": False, |
|
}, |
|
} |
|
|
|
|
|
class MolmoActProcessor(ProcessorMixin): |
|
attributes = ["image_processor", "tokenizer"] |
|
optional_attributes = [ |
|
"chat_template", |
|
"prompt_templates", |
|
"message_format", |
|
"system_prompt", |
|
"style", |
|
"always_start_with_space", |
|
"default_inference_len", |
|
"use_col_tokens", |
|
"image_padding_mask", |
|
] |
|
image_processor_class = "AutoImageProcessor" |
|
tokenizer_class = "AutoTokenizer" |
|
|
|
def __init__( |
|
self, |
|
image_processor: MolmoActImageProcessor = None, |
|
tokenizer: AutoTokenizer = None, |
|
chat_template: Optional[str] = None, |
|
prompt_templates: Optional[str] = "uber_model", |
|
message_format: Optional[str] = "role", |
|
system_prompt: Optional[str] = "demo_or_style", |
|
style: Optional[str] = "demo", |
|
always_start_with_space: Optional[bool] = False, |
|
default_inference_len: Optional[int] = 65, |
|
use_col_tokens: Optional[bool] = True, |
|
image_padding_mask: bool = False, |
|
**kwargs |
|
) -> None: |
|
if tokenizer.padding_side != "left": |
|
logger.warning(f"Tokenizer {tokenizer.name_or_path} is not left-padded, padding side will be set to left") |
|
tokenizer.padding_side = "left" |
|
super().__init__( |
|
image_processor, |
|
tokenizer, |
|
chat_template=chat_template, |
|
prompt_templates=prompt_templates, |
|
message_format=message_format, |
|
system_prompt=system_prompt, |
|
style=style, |
|
always_start_with_space=always_start_with_space, |
|
default_inference_len=default_inference_len, |
|
use_col_tokens=use_col_tokens, |
|
image_padding_mask=image_padding_mask, |
|
) |
|
self._special_tokens = None |
|
|
|
@property |
|
def special_token_ids(self): |
|
if self._special_tokens is None: |
|
self._special_tokens = get_special_token_ids(self.tokenizer) |
|
return self._special_tokens |
|
|
|
def get_user_prompt(self, text: TextInput) -> str: |
|
"""Get user prompt""" |
|
if self.prompt_templates == "none": |
|
return "" |
|
elif self.prompt_templates == "uber_model": |
|
return text |
|
else: |
|
raise NotImplementedError(self.prompt_templates) |
|
|
|
def get_prefix(self) -> str: |
|
"""Get prefix""" |
|
if self.system_prompt == "style_and_length": |
|
assert self.style in ["long_caption"] |
|
style = self.style |
|
n = None if self.default_inference_len is None else str(self.default_inference_len) |
|
if n is not None and len(n) > 0: |
|
prefix = style + " " + n + ":" |
|
else: |
|
prefix = style + " :" |
|
elif self.system_prompt == "demo_or_style": |
|
if self.style in DEMO_STYLES: |
|
prefix = "" |
|
else: |
|
prefix = self.style + ":" |
|
else: |
|
raise NotImplementedError(self.system_prompt) |
|
return prefix |
|
|
|
def format_prompt(self, prompt: str) -> str: |
|
"""Format prompt""" |
|
if self.message_format == "none": |
|
pass |
|
elif self.message_format == "role": |
|
prompt = "User: " + prompt + " Assistant:" |
|
else: |
|
raise NotImplementedError(self.message_format) |
|
|
|
if self.always_start_with_space: |
|
prompt = " " + prompt |
|
|
|
return prompt |
|
|
|
def get_prompt(self, text: TextInput) -> str: |
|
prompt = self.get_user_prompt(text) |
|
if self.system_prompt and self.system_prompt != "none": |
|
prefix = self.get_prefix() |
|
if len(prefix) > 0 and len(prompt) > 0: |
|
prompt = prefix + " " + prompt |
|
elif len(prefix) > 0: |
|
prompt = prefix |
|
prompt = self.format_prompt(prompt) |
|
return prompt |
|
|
|
def get_image_tokens(self, image_grid: np.ndarray): |
|
joint = [] |
|
for h, w in image_grid: |
|
per_row = np.full(w, IMAGE_PATCH_TOKEN) |
|
if self.use_col_tokens: |
|
per_row = np.concatenate([per_row, [IM_COL_TOKEN]], 0) |
|
extra_tokens = np.tile(per_row, [h]) |
|
joint += [ |
|
[IM_START_TOKEN], |
|
extra_tokens, |
|
[IM_END_TOKEN], |
|
] |
|
return np.concatenate(joint) |
|
|
|
def insert_bos_numpy( |
|
self, |
|
input_ids: np.ndarray, |
|
attention_mask: np.ndarray, |
|
bos_token_id: int, |
|
pad_token_id: int, |
|
): |
|
""" |
|
Args: |
|
input_ids: [B, S] array with left padding |
|
attention_mask: [B, S] array (0 for pad, 1 for valid) |
|
bos_token_id: int |
|
pad_token_id: int |
|
Returns: |
|
input_ids_out: [B, S] or [B, S+1] array with bos inserted if needed |
|
attention_mask_out: same shape as input_ids_out |
|
""" |
|
|
|
need_to_expand = len(input_ids.shape) == 1 |
|
if need_to_expand: |
|
input_ids = input_ids[None, :] |
|
attention_mask = attention_mask[None, :] |
|
|
|
B, S = input_ids.shape |
|
|
|
|
|
if S == 0: |
|
new_input_ids = np.full((B, 1), bos_token_id, dtype=input_ids.dtype) |
|
new_attention_mask = np.ones((B, 1), dtype=attention_mask.dtype) |
|
if need_to_expand: |
|
new_input_ids = new_input_ids[0] |
|
new_attention_mask = new_attention_mask[0] |
|
return new_input_ids, new_attention_mask |
|
|
|
first_valid_index = (attention_mask == 1).argmax(axis=-1) |
|
bos_already_present = np.all(input_ids[np.arange(B), first_valid_index] == bos_token_id) |
|
|
|
if bos_already_present: |
|
if need_to_expand: |
|
input_ids = input_ids[0] |
|
attention_mask = attention_mask[0] |
|
return input_ids, attention_mask |
|
else: |
|
new_input_ids = np.full((B, S+1), pad_token_id, dtype=input_ids.dtype) |
|
new_attention_mask = np.zeros((B, S+1), dtype=attention_mask.dtype) |
|
|
|
src_idx = np.tile(np.arange(S), (B, 1)) |
|
valid_mask = src_idx >= first_valid_index[:, None] |
|
tgt_idx = src_idx + 1 |
|
batch_idx = np.tile(np.arange(B)[:, None], (1, S)) |
|
|
|
|
|
flat_vals = input_ids[valid_mask] |
|
flat_batch = batch_idx[valid_mask] |
|
flat_tgt = tgt_idx[valid_mask] |
|
|
|
new_input_ids[flat_batch, flat_tgt] = flat_vals |
|
new_attention_mask[flat_batch, flat_tgt] = 1 |
|
|
|
insert_pos = first_valid_index |
|
new_input_ids[np.arange(B), insert_pos] = bos_token_id |
|
new_attention_mask[np.arange(B), insert_pos] = 1 |
|
|
|
if need_to_expand: |
|
new_input_ids = new_input_ids[0] |
|
new_attention_mask = new_attention_mask[0] |
|
|
|
return new_input_ids, new_attention_mask |
|
|
|
def insert_bos_torch( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
bos_token_id: int, |
|
pad_token_id: int, |
|
): |
|
""" |
|
Args: |
|
input_ids: [B, S] tensor with left padding |
|
attention_mask: [B, S] tensor (0 for pad, 1 for valid) |
|
bos_token_id: int |
|
pad_token_id: int |
|
Returns: |
|
input_ids_out: [B, S] or [B, S+1] tensor with bos inserted if needed |
|
attention_mask_out: same shape as input_ids_out |
|
""" |
|
|
|
B, S = input_ids.shape |
|
device = input_ids.device |
|
|
|
|
|
if S == 0: |
|
new_input_ids = torch.full((B, 1), bos_token_id, dtype=input_ids.dtype, device=device) |
|
new_attention_mask = torch.ones((B, 1), dtype=attention_mask.dtype, device=device) |
|
return new_input_ids, new_attention_mask |
|
|
|
first_valid_index = (attention_mask == 1).long().argmax(dim=-1) |
|
bos_already_present = (input_ids[torch.arange(B), first_valid_index] == bos_token_id).all() |
|
|
|
if bos_already_present: |
|
return input_ids, attention_mask |
|
else: |
|
new_input_ids = torch.full((B, S+1), pad_token_id, dtype=input_ids.dtype, device=device) |
|
new_attention_mask = torch.zeros((B, S+1), dtype=attention_mask.dtype, device=device) |
|
|
|
src_idx = torch.arange(S, device=device).expand(B, S) |
|
valid_mask = src_idx >= first_valid_index.unsqueeze(1) |
|
tgt_idx = src_idx + 1 |
|
batch_idx = torch.arange(B, device=device).unsqueeze(1).expand_as(src_idx) |
|
|
|
flat_vals = input_ids[valid_mask] |
|
flat_batch = batch_idx[valid_mask] |
|
flat_tgt = tgt_idx[valid_mask] |
|
|
|
new_input_ids[flat_batch, flat_tgt] = flat_vals |
|
new_attention_mask[flat_batch, flat_tgt] = 1 |
|
|
|
insert_pos = first_valid_index |
|
batch_indices = torch.arange(B, device=device) |
|
new_input_ids[batch_indices, insert_pos] = bos_token_id |
|
new_attention_mask[batch_indices, insert_pos] = 1 |
|
|
|
return new_input_ids, new_attention_mask |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
images: Union[ImageInput, List[ImageInput]] = None, |
|
apply_chat_template: bool = False, |
|
**kwargs: Unpack[MolmoActProcessorKwargs], |
|
) -> BatchFeature: |
|
if images is None and text is None: |
|
raise ValueError("You have to specify at least one of `images` or `text`.") |
|
|
|
output_kwargs = self._merge_kwargs( |
|
MolmoActProcessorKwargs, |
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs, |
|
**kwargs, |
|
) |
|
|
|
if isinstance(text, (list, tuple)) and isinstance(images, (list, tuple)): |
|
if len(text) != len(images): |
|
raise ValueError("You have to provide the same number of text and images") |
|
if len(text) > 1 and not output_kwargs["text_kwargs"].get("padding", False): |
|
raise ValueError("You have to specify padding when you have multiple text inputs") |
|
|
|
if isinstance(text, str): |
|
text = [text] |
|
elif not isinstance(text, list) and not isinstance(text[0], str): |
|
raise ValueError("Invalid input text. Please provide a string, or a list of strings") |
|
|
|
if images is not None: |
|
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"]) |
|
else: |
|
image_inputs = {} |
|
|
|
if apply_chat_template: |
|
text = [self.get_prompt(t) for t in text] |
|
|
|
prompt_strings = text |
|
if image_inputs.get("images", None) is not None: |
|
|
|
prompt_strings = [] |
|
for idx, image_grids in enumerate(image_inputs.pop("image_grids")): |
|
if isinstance(image_grids, torch.Tensor): |
|
image_grids = image_grids.cpu().numpy() |
|
if isinstance(images, (list, tuple)) and isinstance(images[idx], (list, tuple)): |
|
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)] |
|
offset = 2 if len(images[idx]) < len(image_grids) else 1 |
|
all_image_strings = [] |
|
for i in range(0, len(image_grids), offset): |
|
image_grids_i = image_grids[i:i+offset] |
|
image_tokens = self.get_image_tokens(image_grids_i) |
|
img_ix = i // offset |
|
all_image_strings.append(f"Image {img_ix + 1}" + "".join(image_tokens)) |
|
image_string = "".join(all_image_strings) |
|
prompt_strings.append(image_string + text[idx]) |
|
else: |
|
image_grids = image_grids[~np.all(image_grids == -1, axis=-1)] |
|
assert len(image_grids) in [1, 2], "Only one or two crops are supported for single image inputs" |
|
image_tokens = self.get_image_tokens(image_grids) |
|
image_string = "".join(image_tokens) |
|
prompt_strings.append(image_string + text[idx]) |
|
|
|
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"]) |
|
|
|
input_ids = text_inputs["input_ids"] |
|
attention_mask = text_inputs["attention_mask"] |
|
|
|
is_list = isinstance(input_ids, (list, tuple)) |
|
if is_list: |
|
input_ids = np.array(input_ids) |
|
attention_mask = np.array(attention_mask) |
|
|
|
use_numpy = isinstance(attention_mask, np.ndarray) |
|
|
|
if use_numpy and np.issubdtype(input_ids.dtype, np.floating): |
|
input_ids = input_ids.astype(np.int64) |
|
attention_mask = attention_mask.astype(np.int64) |
|
elif not use_numpy and torch.is_floating_point(input_ids): |
|
input_ids = input_ids.to(torch.int64) |
|
attention_mask = attention_mask.to(torch.int64) |
|
|
|
bos = self.tokenizer.bos_token_id or self.tokenizer.eos_token_id |
|
if use_numpy: |
|
input_ids, attention_mask = self.insert_bos_numpy( |
|
input_ids, attention_mask, bos, self.tokenizer.pad_token_id |
|
) |
|
else: |
|
input_ids, attention_mask = self.insert_bos_torch( |
|
input_ids, attention_mask, bos, self.tokenizer.pad_token_id |
|
) |
|
if is_list: |
|
input_ids = input_ids.tolist() |
|
attention_mask = attention_mask.tolist() |
|
text_inputs["input_ids"] = input_ids |
|
text_inputs["attention_mask"] = attention_mask |
|
|
|
if kwargs.get("device", None) is not None: |
|
text_inputs = text_inputs.to(device=kwargs.get("device"), non_blocking=True) |
|
|
|
return BatchFeature( |
|
data={**text_inputs, **image_inputs}, tensor_type=output_kwargs["common_kwargs"]["return_tensors"] |
|
) |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
|
|
MolmoActProcessor.register_for_auto_class() |