allenpoe's picture
Upload processor
e4a417a verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - Jzuluaga/atcosim_corpus
metrics:
  - wer
model-index:
  - name: Whisper Base ATCOSIM
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: atcosim_corpus
          type: Jzuluaga/atcosim_corpus
          args: 'config: en, split: test'
        metrics:
          - type: wer
            value: 7.2040707016604175
            name: Wer

Whisper Base ATCOSIM

This model is a fine-tuned version of openai/whisper-small on the atcosim_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0468
  • Wer: 7.2041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.6033 0.2092 100 1.3602 78.1066
0.6161 0.4184 200 0.5993 21.7930
0.1103 0.6276 300 0.1273 14.7362
0.0631 0.8368 400 0.0865 13.7587
0.0369 1.0460 500 0.0763 11.9644
0.0198 1.2552 600 0.0644 16.8117
0.0369 1.4644 700 0.0599 10.4379
0.0272 1.6736 800 0.0518 12.1920
0.0202 1.8828 900 0.0473 8.4159
0.0064 2.0921 1000 0.0468 7.2041

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1