bert-base-uncased-ADVQA36K-V1
This model is a fine-tuned version of csarron/bert-base-uncased-squad-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.2415
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 6
- eval_batch_size: 60
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.082 | 0.0599 | 100 | 2.6035 |
2.8722 | 0.1198 | 200 | 2.5143 |
2.795 | 0.1796 | 300 | 2.4826 |
2.8296 | 0.2395 | 400 | 2.4196 |
2.672 | 0.2994 | 500 | 2.4114 |
2.7441 | 0.3593 | 600 | 2.3978 |
2.5998 | 0.4192 | 700 | 2.4459 |
2.5769 | 0.4790 | 800 | 2.4532 |
2.6259 | 0.5389 | 900 | 2.3976 |
2.7231 | 0.5988 | 1000 | 2.3450 |
2.6436 | 0.6587 | 1100 | 2.3284 |
2.487 | 0.7186 | 1200 | 2.3075 |
2.6244 | 0.7784 | 1300 | 2.2957 |
2.5364 | 0.8383 | 1400 | 2.2777 |
2.5134 | 0.8982 | 1500 | 2.2624 |
2.4822 | 0.9581 | 1600 | 2.2618 |
2.143 | 1.0180 | 1700 | 2.5997 |
1.6162 | 1.0778 | 1800 | 2.5829 |
1.4584 | 1.1377 | 1900 | 2.6399 |
1.5492 | 1.1976 | 2000 | 2.5341 |
1.5164 | 1.2575 | 2100 | 2.5774 |
1.527 | 1.3174 | 2200 | 2.6494 |
1.4502 | 1.3772 | 2300 | 2.5469 |
1.4585 | 1.4371 | 2400 | 2.5840 |
1.4931 | 1.4970 | 2500 | 2.6073 |
1.5776 | 1.5569 | 2600 | 2.5040 |
1.5031 | 1.6168 | 2700 | 2.5649 |
1.5553 | 1.6766 | 2800 | 2.4987 |
1.4283 | 1.7365 | 2900 | 2.5381 |
1.5218 | 1.7964 | 3000 | 2.5143 |
1.4675 | 1.8563 | 3100 | 2.5869 |
1.5538 | 1.9162 | 3200 | 2.4369 |
1.4867 | 1.9760 | 3300 | 2.5816 |
1.1069 | 2.0359 | 3400 | 3.0580 |
0.8692 | 2.0958 | 3500 | 3.0554 |
0.7903 | 2.1557 | 3600 | 3.1655 |
0.9055 | 2.2156 | 3700 | 3.0883 |
0.8312 | 2.2754 | 3800 | 3.1815 |
0.8617 | 2.3353 | 3900 | 3.2235 |
0.854 | 2.3952 | 4000 | 3.2345 |
0.8323 | 2.4551 | 4100 | 3.1780 |
0.7861 | 2.5150 | 4200 | 3.1863 |
0.8175 | 2.5749 | 4300 | 3.1931 |
0.8117 | 2.6347 | 4400 | 3.2102 |
0.7713 | 2.6946 | 4500 | 3.2878 |
0.8246 | 2.7545 | 4600 | 3.2711 |
0.7878 | 2.8144 | 4700 | 3.2872 |
0.8074 | 2.8743 | 4800 | 3.2391 |
0.7979 | 2.9341 | 4900 | 3.2374 |
0.7931 | 2.9940 | 5000 | 3.2415 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.6.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 75
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support