|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:9623924 |
|
- loss:MSELoss |
|
base_model: BAAI/bge-m3 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- negative_mse |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-m3 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9378885799751235 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.930037764519436 |
|
name: Spearman Cosine |
|
- task: |
|
type: knowledge-distillation |
|
name: Knowledge Distillation |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: negative_mse |
|
value: -0.010874464351218194 |
|
name: Negative Mse |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9378994572414889 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.9300802695581766 |
|
name: Spearman Cosine |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-m3 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model distilled from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the [tr-sentences](https://huggingface.co/datasets/altaidevorg/tr-sentences) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
Refer to the [blog post](https://medium.com/altai-dev/distilling-efficiency-experiments-in-compressing-baai-bge-m3-using-a-synthetic-dataset-9430e21c6b8f) and the [8l variant](https://huggingface.co/altaidevorg/bge-m3-distill-8l) for more information. |