🎡 Qwen3-4B Lyrics Creation Model

Model Specialty Training Steps License

A fine-tuned Qwen3-4B model specialized in step-by-step lyrics creation and songwriting

πŸ€— Model Card β€’ πŸ’» GGUF Version β€’ πŸ”§ Axolotl Framework


🌟 Model Overview

This model is a specialized version of Qwen3-4B fine-tuned specifically for lyrics creation and songwriting. It excels at:

  • 🎡 Step-by-step lyric writing with visible creative process
  • 🎢 Song structure planning (verses, chorus, bridge)
  • πŸ’­ Emotional storytelling through lyrics
  • 🎀 Various music genres and styles
  • ✍️ Creative writing process for songs

πŸ“Š Training Performance & Metrics

πŸ† Training Results

Metric Value Improvement
Initial Loss 2.97 -
Final Eval Loss 1.37 54% reduction
Final Train Loss 1.43 52% reduction
Training Convergence Excellent Stable plateau
Overfitting None detected Healthy train/eval gap

πŸ“ˆ Loss Progression

  • Steps 0-100: Rapid learning phase (2.97 β†’ 1.46)
  • Steps 100-400: Pattern mastery (1.46 β†’ 1.37)
  • Steps 400-600: Fine convergence (1.37 β†’ 1.35)
  • Steps 600-1000: Final optimization (1.35 β†’ 1.37)

⏱️ Training Efficiency

  • Total Training Time: 56 minutes 54 seconds
  • Steps per Second: 0.291
  • Samples per Second: 2.324
  • GPU Memory Usage: 26.8GB / 40GB (67% utilization)
  • System RAM Usage: 7.1GB / 83.5GB (8% utilization)

πŸ“‹ Training Configuration

πŸ”§ Model Architecture

Parameter Value
Base Model Qwen/Qwen3-4B
Training Method LoRA Fine-tuning
Total Parameters 4.09B
Trainable Parameters 66.06M (1.62%)
Context Length 4,096 tokens

βš™οΈ LoRA Configuration

adapter: lora
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - k_proj  
  - v_proj
  - o_proj
  - gate_proj
  - down_proj
  - up_proj

🎯 Training Hyperparameters

# Training Schedule
max_steps: 1000
learning_rate: 0.0003
lr_scheduler: cosine
warmup_steps: 100

# Batch Configuration  
micro_batch_size: 4
gradient_accumulation_steps: 2
effective_batch_size: 8

# Optimization
sequence_len: 4096
sample_packing: false
gradient_checkpointing: true

# Precision & Performance
bf16: true
flash_attention: true

πŸ“Š Dataset Information

  • Dataset Type: High-quality lyrics creation dataset (private)
  • Total Samples: 3,500 reasoning examples
  • Training Split: 90% (3,150 samples)
  • Validation Split: 10% (350 samples)
  • Format: Chat template with thinking process
  • Specialization: Step-by-step lyrics creation

πŸ” Evaluation Metrics

  • Eval Steps: Every 100 training steps (10 evaluations total)
  • Save Steps: Every 200 training steps (5 checkpoints)
  • Logging Steps: Every 10 steps
  • Final Evaluation: 10.373 samples/sec, 2.593 steps/sec

πŸš€ Usage

Basic Setup

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "alvanalrakib/qwen3-4b-reasoning-merge"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)

Optimal Generation Parameters

# For lyrics creation (thinking mode)
generation_config = {
    "temperature": 0.6,
    "top_p": 0.95,
    "top_k": 20,
    "min_p": 0.0,
    "do_sample": True,
    "max_new_tokens": 2048
}

πŸ“ Model Formats

πŸ“‹ Technical Specifications

Specification Details
Parameters ~4.09B total, 66.06M trainable
Architecture Transformer (Qwen3)
Context Length 32,768 tokens (native)
Training Context 4,096 tokens
Precision BF16
Inference Memory ~8GB+ VRAM
Thinking Tokens <think>...</think>
Special Tokens `<

πŸ”§ Training Infrastructure

πŸ’» Hardware Used

  • GPU: NVIDIA A100 40GB
  • Memory: 83.5GB System RAM
  • Storage: 235.7GB available disk space
  • Training Platform: Google Colab Pro+

πŸ› οΈ Software Stack

  • Framework: Axolotl
  • Base Library: Transformers 4.51.0+
  • PyTorch: 2.6.0+ with CUDA support
  • Precision: Mixed precision (BF16)
  • Flash Attention: Enabled

πŸ™ Acknowledgments

  • Qwen Team at Alibaba Cloud for the exceptional Qwen3-4B base model
  • Axolotl Community for the outstanding fine-tuning framework
  • Hugging Face for the transformers library and model hosting

πŸ“„ License

This model is released under the Apache 2.0 License, following the original Qwen3 licensing terms.


🎡 Built for songwriters β€’ Optimized for creativity β€’ Made with ❀️

Specialized in lyrics creation with step-by-step creative process

Downloads last month
-
Safetensors
Model size
4.02B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for alvanalrakib/qwen3-4b-reasoning-merge

Base model

Qwen/Qwen3-4B-Base
Finetuned
Qwen/Qwen3-4B
Finetuned
(295)
this model