|
import argparse |
|
import os |
|
import torch |
|
from exp.exp_long_term_forecasting import Exp_Long_Term_Forecast |
|
from exp.exp_imputation import Exp_Imputation |
|
from exp.exp_short_term_forecasting import Exp_Short_Term_Forecast |
|
from exp.exp_anomaly_detection import Exp_Anomaly_Detection |
|
from exp.exp_classification import Exp_Classification |
|
from utils.print_args import print_args |
|
import random |
|
import numpy as np |
|
|
|
if __name__ == '__main__': |
|
fix_seed = 2021 |
|
random.seed(fix_seed) |
|
torch.manual_seed(fix_seed) |
|
np.random.seed(fix_seed) |
|
|
|
parser = argparse.ArgumentParser(description='TimesNet') |
|
|
|
|
|
parser.add_argument('--task_name', type=str, required=True, default='long_term_forecast', |
|
help='task name, options:[long_term_forecast, short_term_forecast, imputation, classification, anomaly_detection]') |
|
parser.add_argument('--is_training', type=int, required=True, default=1, help='status') |
|
parser.add_argument('--model_id', type=str, required=True, default='test', help='model id') |
|
parser.add_argument('--model', type=str, required=True, default='Autoformer', |
|
help='model name, options: [Autoformer, Transformer, TimesNet]') |
|
|
|
|
|
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type') |
|
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file') |
|
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file') |
|
parser.add_argument('--features', type=str, default='M', |
|
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate') |
|
parser.add_argument('--target', type=str, default='residual', help='target feature in S or MS task') |
|
parser.add_argument('--freq', type=str, default='t', |
|
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h') |
|
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints') |
|
|
|
|
|
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length') |
|
parser.add_argument('--label_len', type=int, default=48, help='start token length') |
|
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length') |
|
parser.add_argument('--seasonal_patterns', type=str, default='Monthly', help='subset for M4') |
|
parser.add_argument('--inverse', action='store_true', help='inverse output data', default=True) |
|
|
|
|
|
parser.add_argument('--mask_rate', type=float, default=0.25, help='mask ratio') |
|
|
|
|
|
parser.add_argument('--anomaly_ratio', type=float, default=0.25, help='prior anomaly ratio (%)') |
|
|
|
|
|
parser.add_argument('--expand', type=int, default=2, help='expansion factor for Mamba') |
|
parser.add_argument('--d_conv', type=int, default=4, help='conv kernel size for Mamba') |
|
parser.add_argument('--top_k', type=int, default=5, help='for TimesBlock') |
|
parser.add_argument('--num_kernels', type=int, default=6, help='for Inception') |
|
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') |
|
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size') |
|
parser.add_argument('--c_out', type=int, default=7, help='output size') |
|
parser.add_argument('--d_model', type=int, default=512, help='dimension of model') |
|
parser.add_argument('--n_heads', type=int, default=8, help='num of heads') |
|
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers') |
|
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers') |
|
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn') |
|
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average') |
|
parser.add_argument('--factor', type=int, default=1, help='attn factor') |
|
parser.add_argument('--distil', action='store_false', |
|
help='whether to use distilling in encoder, using this argument means not using distilling', |
|
default=True) |
|
parser.add_argument('--dropout', type=float, default=0.1, help='dropout') |
|
parser.add_argument('--embed', type=str, default='timeF', |
|
help='time features encoding, options:[timeF, fixed, learned]') |
|
parser.add_argument('--activation', type=str, default='gelu', help='activation') |
|
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder') |
|
parser.add_argument('--channel_independence', type=int, default=1, |
|
help='0: channel dependence 1: channel independence for FreTS model') |
|
parser.add_argument('--decomp_method', type=str, default='moving_avg', |
|
help='method of series decompsition, only support moving_avg or dft_decomp') |
|
parser.add_argument('--use_norm', type=int, default=1, help='whether to use normalize; True 1 False 0') |
|
parser.add_argument('--down_sampling_layers', type=int, default=0, help='num of down sampling layers') |
|
parser.add_argument('--down_sampling_window', type=int, default=1, help='down sampling window size') |
|
parser.add_argument('--down_sampling_method', type=str, default=None, |
|
help='down sampling method, only support avg, max, conv') |
|
parser.add_argument('--seg_len', type=int, default=48, |
|
help='the length of segmen-wise iteration of SegRNN') |
|
|
|
|
|
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers') |
|
parser.add_argument('--itr', type=int, default=1, help='experiments times') |
|
parser.add_argument('--train_epochs', type=int, default=20, help='train epochs') |
|
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data') |
|
parser.add_argument('--patience', type=int, default=3, help='early stopping patience') |
|
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate') |
|
parser.add_argument('--des', type=str, default='test', help='exp description') |
|
parser.add_argument('--loss', type=str, default='MSE', help='loss function') |
|
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate') |
|
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False) |
|
|
|
|
|
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu') |
|
parser.add_argument('--gpu', type=int, default=0, help='gpu') |
|
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False) |
|
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus') |
|
|
|
|
|
parser.add_argument('--p_hidden_dims', type=int, nargs='+', default=[128, 128], |
|
help='hidden layer dimensions of projector (List)') |
|
parser.add_argument('--p_hidden_layers', type=int, default=2, help='number of hidden layers in projector') |
|
|
|
|
|
parser.add_argument('--use_dtw', type=bool, default=False, |
|
help='the controller of using dtw metric (dtw is time consuming, not suggested unless necessary)') |
|
|
|
|
|
parser.add_argument('--augmentation_ratio', type=int, default=0, help="How many times to augment") |
|
parser.add_argument('--seed', type=int, default=2, help="Randomization seed") |
|
parser.add_argument('--jitter', default=False, action="store_true", help="Jitter preset augmentation") |
|
parser.add_argument('--scaling', default=False, action="store_true", help="Scaling preset augmentation") |
|
parser.add_argument('--permutation', default=False, action="store_true", |
|
help="Equal Length Permutation preset augmentation") |
|
parser.add_argument('--randompermutation', default=False, action="store_true", |
|
help="Random Length Permutation preset augmentation") |
|
parser.add_argument('--magwarp', default=False, action="store_true", help="Magnitude warp preset augmentation") |
|
parser.add_argument('--timewarp', default=False, action="store_true", help="Time warp preset augmentation") |
|
parser.add_argument('--windowslice', default=False, action="store_true", help="Window slice preset augmentation") |
|
parser.add_argument('--windowwarp', default=False, action="store_true", help="Window warp preset augmentation") |
|
parser.add_argument('--rotation', default=False, action="store_true", help="Rotation preset augmentation") |
|
parser.add_argument('--spawner', default=False, action="store_true", help="SPAWNER preset augmentation") |
|
parser.add_argument('--dtwwarp', default=False, action="store_true", help="DTW warp preset augmentation") |
|
parser.add_argument('--shapedtwwarp', default=False, action="store_true", help="Shape DTW warp preset augmentation") |
|
parser.add_argument('--wdba', default=False, action="store_true", help="Weighted DBA preset augmentation") |
|
parser.add_argument('--discdtw', default=False, action="store_true", |
|
help="Discrimitive DTW warp preset augmentation") |
|
parser.add_argument('--discsdtw', default=False, action="store_true", |
|
help="Discrimitive shapeDTW warp preset augmentation") |
|
parser.add_argument('--extra_tag', type=str, default="", help="Anything extra") |
|
|
|
|
|
parser.add_argument('--patch_len', type=int, default=16, help='patch length') |
|
|
|
args = parser.parse_args() |
|
|
|
args.use_gpu = True if torch.cuda.is_available() else False |
|
|
|
print(torch.cuda.is_available()) |
|
|
|
if args.use_gpu and args.use_multi_gpu: |
|
args.devices = args.devices.replace(' ', '') |
|
device_ids = args.devices.split(',') |
|
args.device_ids = [int(id_) for id_ in device_ids] |
|
args.gpu = args.device_ids[0] |
|
|
|
print('Args in experiment:') |
|
print_args(args) |
|
|
|
if args.task_name == 'long_term_forecast': |
|
Exp = Exp_Long_Term_Forecast |
|
elif args.task_name == 'short_term_forecast': |
|
Exp = Exp_Short_Term_Forecast |
|
elif args.task_name == 'imputation': |
|
Exp = Exp_Imputation |
|
elif args.task_name == 'anomaly_detection': |
|
Exp = Exp_Anomaly_Detection |
|
elif args.task_name == 'classification': |
|
Exp = Exp_Classification |
|
else: |
|
Exp = Exp_Long_Term_Forecast |
|
|
|
if args.is_training: |
|
for ii in range(args.itr): |
|
|
|
exp = Exp(args) |
|
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( |
|
args.task_name, |
|
args.model_id, |
|
args.model, |
|
args.data, |
|
args.features, |
|
args.seq_len, |
|
args.label_len, |
|
args.pred_len, |
|
args.d_model, |
|
args.n_heads, |
|
args.e_layers, |
|
args.d_layers, |
|
args.d_ff, |
|
args.expand, |
|
args.d_conv, |
|
args.factor, |
|
args.embed, |
|
args.distil, |
|
args.des, ii) |
|
|
|
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting)) |
|
exp.train(setting) |
|
|
|
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) |
|
exp.test(setting) |
|
torch.cuda.empty_cache() |
|
else: |
|
ii = 0 |
|
setting = '{}_{}_{}_{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_expand{}_dc{}_fc{}_eb{}_dt{}_{}_{}'.format( |
|
args.task_name, |
|
args.model_id, |
|
args.model, |
|
args.data, |
|
args.features, |
|
args.seq_len, |
|
args.label_len, |
|
args.pred_len, |
|
args.d_model, |
|
args.n_heads, |
|
args.e_layers, |
|
args.d_layers, |
|
args.d_ff, |
|
args.expand, |
|
args.d_conv, |
|
args.factor, |
|
args.embed, |
|
args.distil, |
|
args.des, ii) |
|
|
|
exp = Exp(args) |
|
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting)) |
|
exp.test(setting, test=1) |
|
torch.cuda.empty_cache() |