Bedrock Titan Text Embeddings v2
This repository contains the MTEB scores and usage examples of Bedrock Titan Text Embeddings v2. You can use the embedding model either via the Bedrock InvokeModel API or via Bedrock's batch jobs. For RAG use cases we recommend the former to embed queries during search (latency optimized) and the latter to index corpus (throughput optimized).
Using Bedrock's InvokeModel API
import json
import boto3
class TitanEmbeddings(object):
accept = "application/json"
content_type = "application/json"
def __init__(self, model_id="amazon.titan-embed-text-v2:0"):
self.bedrock = boto3.client(service_name='bedrock-runtime')
self.model_id = model_id
def __call__(self, text, dimensions, normalize=True):
"""
Returns Titan Embeddings
Args:
text (str): text to embed
dimensions (int): Number of output dimensions.
normalize (bool): Whether to return the normalized embedding or not.
Return:
List[float]: Embedding
"""
body = json.dumps({
"inputText": text,
"dimensions": dimensions,
"normalize": normalize
})
response = self.bedrock.invoke_model(
body=body, modelId=self.model_id, accept=self.accept, contentType=self.content_type
)
response_body = json.loads(response.get('body').read())
return response_body['embedding']
if __name__ == '__main__':
"""
Entrypoint for Amazon Titan Embeddings V2 - Text example.
"""
dimensions = 1024
normalize = True
titan_embeddings_v2 = TitanEmbeddings(model_id="amazon.titan-embed-text-v2:0")
input_text = "What are the different services that you offer?"
embedding = titan_embeddings_v2(input_text, dimensions, normalize)
print(f"{input_text=}")
print(f"{embedding[:10]=}")
Using Bedrock's batch jobs
import requests
from aws_requests_auth.boto_utils import BotoAWSRequestsAuth
region = "us-east-1"
base_uri = f"bedrock.{region}.amazonaws.com"
batch_job_uri = f"https://{base_uri}/model-invocation-job/"
# For details on how to set up an IAM role for batch inference, see
# https://docs.aws.amazon.com/bedrock/latest/userguide/batch-inference-permissions.html
role_arn = "arn:aws:iam::111122223333:role/my-batch-inference-role"
payload = {
"inputDataConfig": {
"s3InputDataConfig": {
"s3Uri": "s3://my-input-bucket/batch-input/",
"s3InputFormat": "JSONL"
}
},
"jobName": "embeddings-v2-batch-job",
"modelId": "amazon.titan-embed-text-v2:0",
"outputDataConfig": {
"s3OutputDataConfig": {
"s3Uri": "s3://my-output-bucket/batch-output/"
}
},
"roleArn": role_arn
}
request_auth = BotoAWSRequestsAuth(
aws_host=base_uri,
aws_region=region,
aws_service="bedrock"
)
response= requests.request("POST", batch_job_uri, json=payload, auth=request_auth)
print(response.json())
- Downloads last month
- 855
Inference API (serverless) has been turned off for this model.
Spaces using amazon/Titan-text-embeddings-v2 2
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported79.313
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported43.947
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported73.613
- accuracy on MTEB AmazonCounterfactualClassification (de)test set self-reported70.942
- ap on MTEB AmazonCounterfactualClassification (de)test set self-reported82.301
- f1 on MTEB AmazonCounterfactualClassification (de)test set self-reported69.380
- accuracy on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported82.294
- ap on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported29.957
- f1 on MTEB AmazonCounterfactualClassification (en-ext)test set self-reported68.882
- accuracy on MTEB AmazonCounterfactualClassification (ja)test set self-reported80.064