UCF-I3D model
Collection
5 items
โข
Updated
we leveraged a pre-trained I3D model and fine-tuned it using two strategies:
Block-level tuning Adjusting and retraining groups of layers (blocks) to adapt the model to the new dataset.
Layer-level tuning Fine-tuning specific layers for more granular control over feature learning.
The final classification layer of the I3D model was removed and replaced with a custom output layer tailored to our binary classification task: predicting whether an activity represents a crime (1) or non-crime (0).
import torch
import torch.nn as nn
class UCFModel(nn.Module):
def __init__(self, model_name="i3d_r50"):
super().__init__()
self.model_name = model_name
self.model = torch.hub.load("facebookresearch/pytorchvideo", model_name, pretrained=True)
in_features = self.model.blocks[-1].proj.in_features
self.model.blocks[-1].proj = nn.Linear(in_features, 2)
def forward(self, frames):
return self.model(frames)
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from torchvision import transforms
inference_transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
class UCFInferenceByFrames:
def __init__(self, repo_id):
self.repo_id = repo_id
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model = self.load_model()
def load_model(self):
model_path = hf_hub_download(repo_id=self.repo_id, filename="ucf_model.pth")
state_dict = torch.load(model_path)
model = UCFModel().to(device=self.device)
model.load_state_dict(state_dict)
model.eval()
return model
def inference(self, frames):
video_tensor_list = []
for frame in frames:
frame_pil = Image.fromarray(frame)
frame_tensor = inference_transform(frame_pil)
video_tensor_list.append(frame_tensor)
video_tensor = torch.stack(video_tensor_list)
video_tensor = video_tensor.permute(1, 0, 2, 3).unsqueeze(0).float()
video_tensor = video_tensor.to(self.device)
with torch.no_grad():
output = self.model(video_tensor)
return output.argmax(1)
import cv2 as cv
import numpy as np
ucf = UCFInferenceByFrames("amjad-awad/ucf-i3d-model-by-3-block-lr-0.001")
def inference(ucf_model, video_path, max_frames=16):
cap = cv.VideoCapture(video_path)
if not cap.isOpened():
print("No video")
return
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
length = len(frames)
indices = np.linspace(0, length - 1, max_frames, dtype=int)
frames = [frames[i] for i in indices]
predict = ucf_model.inference(frames)
return "Crime" if int(predict) == 1 else "No-Crime"
predict = inference(ucf_model=ucf, video_path="YOUR_VIDEO_PATH.mp4")
print(predict)