Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
pipeline_tag: video-classification
|
10 |
+
tags:
|
11 |
+
- i3d
|
12 |
+
- pytorch
|
13 |
+
- crime-detection
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Smart Surveillance System
|
18 |
+
|
19 |
+
we leveraged a pre-trained I3D model and fine-tuned it using two strategies:
|
20 |
+
|
21 |
+
Block-level tuning Adjusting and retraining groups of layers (blocks) to adapt the model to the new dataset.
|
22 |
+
|
23 |
+
Layer-level tuning Fine-tuning specific layers for more granular control over feature learning.
|
24 |
+
|
25 |
+
The final classification layer of the I3D model was removed and replaced with a custom output layer tailored to our binary classification task: predicting whether an activity represents a crime (1) or non-crime (0).
|
26 |
+
|
27 |
+
## How Run
|
28 |
+
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
|
33 |
+
|
34 |
+
class UCFModel(nn.Module):
|
35 |
+
def __init__(self, model_name="i3d_r50"):
|
36 |
+
super().__init__()
|
37 |
+
self.model_name = model_name
|
38 |
+
|
39 |
+
self.model = torch.hub.load("facebookresearch/pytorchvideo", model_name, pretrained=True)
|
40 |
+
|
41 |
+
in_features = self.model.blocks[-1].proj.in_features
|
42 |
+
self.model.blocks[-1].proj = nn.Linear(in_features, 2)
|
43 |
+
|
44 |
+
def forward(self, frames):
|
45 |
+
return self.model(frames)
|
46 |
+
|
47 |
+
```
|
48 |
+
|
49 |
+
```python
|
50 |
+
import torch
|
51 |
+
from PIL import Image
|
52 |
+
from huggingface_hub import hf_hub_download
|
53 |
+
from torchvision import transforms
|
54 |
+
|
55 |
+
|
56 |
+
inference_transform = transforms.Compose(
|
57 |
+
[
|
58 |
+
transforms.Resize((224, 224)),
|
59 |
+
transforms.ToTensor(),
|
60 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
class UCFInferenceByFrames:
|
66 |
+
def __init__(self, repo_id):
|
67 |
+
self.repo_id = repo_id
|
68 |
+
|
69 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
+
self.model = self.load_model()
|
71 |
+
|
72 |
+
def load_model(self):
|
73 |
+
model_path = hf_hub_download(repo_id=self.repo_id, filename="ucf_model.pth")
|
74 |
+
state_dict = torch.load(model_path)
|
75 |
+
|
76 |
+
model = UCFModel().to(device=self.device)
|
77 |
+
model.load_state_dict(state_dict)
|
78 |
+
model.eval()
|
79 |
+
|
80 |
+
return model
|
81 |
+
|
82 |
+
def inference(self, frames):
|
83 |
+
video_tensor_list = []
|
84 |
+
for frame in frames:
|
85 |
+
frame_pil = Image.fromarray(frame)
|
86 |
+
frame_tensor = inference_transform(frame_pil)
|
87 |
+
video_tensor_list.append(frame_tensor)
|
88 |
+
|
89 |
+
video_tensor = torch.stack(video_tensor_list)
|
90 |
+
video_tensor = video_tensor.permute(1, 0, 2, 3).unsqueeze(0).float()
|
91 |
+
|
92 |
+
video_tensor = video_tensor.to(self.device)
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
output = self.model(video_tensor)
|
96 |
+
|
97 |
+
return output.argmax(1)
|
98 |
+
```
|
99 |
+
|
100 |
+
```python
|
101 |
+
import cv2 as cv
|
102 |
+
import numpy as np
|
103 |
+
|
104 |
+
ucf = UCFInferenceByFrames("amjad-awad/ucf-i3d-model-by-3-block-lr-0.001")
|
105 |
+
|
106 |
+
def inference(ucf_model, video_path, max_frames=16):
|
107 |
+
cap = cv.VideoCapture(video_path)
|
108 |
+
|
109 |
+
if not cap.isOpened():
|
110 |
+
print("No video")
|
111 |
+
return
|
112 |
+
|
113 |
+
frames = []
|
114 |
+
|
115 |
+
while True:
|
116 |
+
ret, frame = cap.read()
|
117 |
+
|
118 |
+
if not ret:
|
119 |
+
break
|
120 |
+
|
121 |
+
frames.append(frame)
|
122 |
+
|
123 |
+
length = len(frames)
|
124 |
+
indices = np.linspace(0, length - 1, max_frames, dtype=int)
|
125 |
+
frames = [frames[i] for i in indices]
|
126 |
+
predict = ucf_model.inference(frames)
|
127 |
+
|
128 |
+
return "Crime" if int(predict) == 1 else "No-Crime"
|
129 |
+
|
130 |
+
```
|
131 |
+
|
132 |
+
```python
|
133 |
+
predict = inference(ucf_model=ucf, video_path="YOUR_VIDEO_PATH.mp4")
|
134 |
+
print(predict)
|
135 |
+
```
|