amjad-awad commited on
Commit
2f6269d
·
verified ·
1 Parent(s): 91cf636

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ metrics:
5
+ - accuracy
6
+ - f1
7
+ - precision
8
+ - recall
9
+ pipeline_tag: video-classification
10
+ tags:
11
+ - i3d
12
+ - pytorch
13
+ - crime-detection
14
+ ---
15
+
16
+
17
+ # Smart Surveillance System
18
+
19
+ we leveraged a pre-trained I3D model and fine-tuned it using two strategies:
20
+
21
+ Block-level tuning Adjusting and retraining groups of layers (blocks) to adapt the model to the new dataset.
22
+
23
+ Layer-level tuning Fine-tuning specific layers for more granular control over feature learning.
24
+
25
+ The final classification layer of the I3D model was removed and replaced with a custom output layer tailored to our binary classification task: predicting whether an activity represents a crime (1) or non-crime (0).
26
+
27
+ ## How Run
28
+
29
+ ```python
30
+ import torch
31
+ import torch.nn as nn
32
+
33
+
34
+ class UCFModel(nn.Module):
35
+ def __init__(self, model_name="i3d_r50"):
36
+ super().__init__()
37
+ self.model_name = model_name
38
+
39
+ self.model = torch.hub.load("facebookresearch/pytorchvideo", model_name, pretrained=True)
40
+
41
+ in_features = self.model.blocks[-1].proj.in_features
42
+ self.model.blocks[-1].proj = nn.Linear(in_features, 2)
43
+
44
+ def forward(self, frames):
45
+ return self.model(frames)
46
+
47
+ ```
48
+
49
+ ```python
50
+ import torch
51
+ from PIL import Image
52
+ from huggingface_hub import hf_hub_download
53
+ from torchvision import transforms
54
+
55
+
56
+ inference_transform = transforms.Compose(
57
+ [
58
+ transforms.Resize((224, 224)),
59
+ transforms.ToTensor(),
60
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
61
+ ]
62
+ )
63
+
64
+
65
+ class UCFInferenceByFrames:
66
+ def __init__(self, repo_id):
67
+ self.repo_id = repo_id
68
+
69
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
70
+ self.model = self.load_model()
71
+
72
+ def load_model(self):
73
+ model_path = hf_hub_download(repo_id=self.repo_id, filename="ucf_model.pth")
74
+ state_dict = torch.load(model_path)
75
+
76
+ model = UCFModel().to(device=self.device)
77
+ model.load_state_dict(state_dict)
78
+ model.eval()
79
+
80
+ return model
81
+
82
+ def inference(self, frames):
83
+ video_tensor_list = []
84
+ for frame in frames:
85
+ frame_pil = Image.fromarray(frame)
86
+ frame_tensor = inference_transform(frame_pil)
87
+ video_tensor_list.append(frame_tensor)
88
+
89
+ video_tensor = torch.stack(video_tensor_list)
90
+ video_tensor = video_tensor.permute(1, 0, 2, 3).unsqueeze(0).float()
91
+
92
+ video_tensor = video_tensor.to(self.device)
93
+
94
+ with torch.no_grad():
95
+ output = self.model(video_tensor)
96
+
97
+ return output.argmax(1)
98
+ ```
99
+
100
+ ```python
101
+ import cv2 as cv
102
+ import numpy as np
103
+
104
+ ucf = UCFInferenceByFrames("amjad-awad/ucf-i3d-model-by-3-block-lr-0.001")
105
+
106
+ def inference(ucf_model, video_path, max_frames=16):
107
+ cap = cv.VideoCapture(video_path)
108
+
109
+ if not cap.isOpened():
110
+ print("No video")
111
+ return
112
+
113
+ frames = []
114
+
115
+ while True:
116
+ ret, frame = cap.read()
117
+
118
+ if not ret:
119
+ break
120
+
121
+ frames.append(frame)
122
+
123
+ length = len(frames)
124
+ indices = np.linspace(0, length - 1, max_frames, dtype=int)
125
+ frames = [frames[i] for i in indices]
126
+ predict = ucf_model.inference(frames)
127
+
128
+ return "Crime" if int(predict) == 1 else "No-Crime"
129
+
130
+ ```
131
+
132
+ ```python
133
+ predict = inference(ucf_model=ucf, video_path="YOUR_VIDEO_PATH.mp4")
134
+ print(predict)
135
+ ```