Mizo Automatic Speech Recognition

This model is a fine-tuned version of facebook/wav2vec2-large on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.1551 - Wer: 0.1937

Citation

BibTeX entry and citation info:

@article{10.1145/3746063,
author = {Bawitlung, Andrew and Dash, Sandeep Kumar and Pattanayak, Radha Mohan},
title = {Mizo Automatic Speech Recognition: Leveraging Wav2vec 2.0 and XLS-R for Enhanced Accuracy in Low-Resource Language Processing},
year = {2025},
url = {https://doi.org/10.1145/3746063},
doi = {10.1145/3746063},
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
month = jun,
}

Training and evaluation data

MiZonal v1.0

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 49
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 28
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.72 100 2.9713 1.0
3.3962 1.45 200 2.5742 0.9999
3.3962 2.17 300 1.0420 0.8141
1.5969 2.9 400 0.7051 0.6338
1.5969 3.62 500 0.5743 0.5490
0.9636 4.35 600 0.5414 0.4995
0.9636 5.07 700 0.4623 0.4644
0.804 5.8 800 0.4226 0.4230
0.804 6.52 900 0.4549 0.3944
0.7332 7.25 1000 0.4360 0.3908
0.7332 7.97 1100 0.3846 0.4101
0.666 8.7 1200 0.3979 0.4136
0.666 9.42 1300 0.3188 0.3691
0.6051 10.14 1400 0.2872 0.3473
0.6051 10.87 1500 0.2632 0.3448
0.5467 11.59 1600 0.2454 0.3091
0.5467 12.32 1700 0.2387 0.3390
0.5073 13.04 1800 0.2727 0.2812
0.5073 13.77 1900 0.2328 0.3185
0.4611 14.49 2000 0.2480 0.2777
0.4611 15.22 2100 0.2246 0.2517
0.4237 15.94 2200 0.2243 0.2598
0.4237 16.67 2300 0.2122 0.2719
0.3901 17.39 2400 0.1983 0.2461
0.3901 18.12 2500 0.2150 0.2240
0.3664 18.84 2600 0.2058 0.2310
0.3664 19.57 2700 0.1860 0.2231
0.3352 20.29 2800 0.1691 0.2276
0.3352 21.01 2900 0.1934 0.2206
0.313 21.74 3000 0.1887 0.2182
0.313 22.46 3100 0.1758 0.2060
0.2854 23.19 3200 0.1811 0.2166
0.2854 23.91 3300 0.1667 0.2109
0.2666 24.64 3400 0.1658 0.2005
0.2666 25.36 3500 0.1621 0.1960
0.2604 26.09 3600 0.1599 0.2018
0.2604 26.81 3700 0.1527 0.1968
0.2452 27.54 3800 0.1551 0.1937

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
10
Safetensors
Model size
315M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for andrewbawitlung/wav2vec2-large-mizo-lus-v25

Finetuned
(18)
this model

Space using andrewbawitlung/wav2vec2-large-mizo-lus-v25 1

Collection including andrewbawitlung/wav2vec2-large-mizo-lus-v25

Evaluation results