Mizo Automatic Speech Recognition

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1318
  • Wer: 0.1582

Citation

BibTeX entry and citation info:

@article{10.1145/3746063,
author = {Bawitlung, Andrew and Dash, Sandeep Kumar and Pattanayak, Radha Mohan},
title = {Mizo Automatic Speech Recognition: Leveraging Wav2vec 2.0 and XLS-R for Enhanced Accuracy in Low-Resource Language Processing},
year = {2025},
url = {https://doi.org/10.1145/3746063},
doi = {10.1145/3746063},
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
month = jun,
}

Training and evaluation data

MiZonal v1.0

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 49
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 28
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.1831 2.18 300 0.3039 0.3949
0.7933 4.35 600 0.1978 0.2774
0.5182 6.53 900 0.1940 0.2764
0.4319 8.7 1200 0.1549 0.2587
0.3472 10.88 1500 0.1345 0.2096
0.2858 13.06 1800 0.1374 0.1916
0.2349 15.23 2100 0.1298 0.1839
0.1973 17.41 2400 0.1214 0.1820
0.1633 19.58 2700 0.1302 0.1631
0.1378 21.76 3000 0.1331 0.1804
0.1131 23.93 3300 0.1284 0.1666
0.0905 26.11 3600 0.1318 0.1582

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
10
Safetensors
Model size
2.16B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for andrewbawitlung/wav2vec2-xls-r-2b-mizo-lus-v25

Finetuned
(9)
this model

Space using andrewbawitlung/wav2vec2-xls-r-2b-mizo-lus-v25 1

Collection including andrewbawitlung/wav2vec2-xls-r-2b-mizo-lus-v25

Evaluation results