Mizo Automatic Speech Recognition

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MiZonal v1.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0932
  • Wer: 0.1184

Citation

BibTeX entry and citation info:

@article{10.1145/3746063,
author = {Bawitlung, Andrew and Dash, Sandeep Kumar and Pattanayak, Radha Mohan},
title = {Mizo Automatic Speech Recognition: Leveraging Wav2vec 2.0 and XLS-R for Enhanced Accuracy in Low-Resource Language Processing},
year = {2025},
url = {https://doi.org/10.1145/3746063},
doi = {10.1145/3746063},
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.},
month = jun,
}

Training and evaluation data

MiZonal v1.0

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 49
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 28
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.73 100 3.2655 1.0
4.2561 1.45 200 2.8818 1.0
4.2561 2.18 300 2.8428 1.0
2.8118 2.9 400 2.3670 0.9994
2.8118 3.63 500 0.8009 0.7144
1.4174 4.35 600 0.4873 0.5069
1.4174 5.08 700 0.3496 0.4169
0.754 5.8 800 0.2846 0.3422
0.754 6.53 900 0.2319 0.3116
0.5884 7.25 1000 0.2122 0.2833
0.5884 7.98 1100 0.1931 0.2655
0.4894 8.7 1200 0.1651 0.2221
0.4894 9.43 1300 0.1520 0.2100
0.4171 10.15 1400 0.1379 0.1925
0.4171 10.88 1500 0.1271 0.1793
0.3695 11.6 1600 0.1199 0.1763
0.3695 12.33 1700 0.1217 0.1712
0.3415 13.06 1800 0.1158 0.1640
0.3415 13.78 1900 0.1142 0.1605
0.3094 14.51 2000 0.1137 0.1530
0.3094 15.23 2100 0.1084 0.1454
0.2829 15.96 2200 0.1045 0.1464
0.2829 16.68 2300 0.1025 0.1416
0.2641 17.41 2400 0.0998 0.1374
0.2641 18.13 2500 0.0987 0.1461
0.2486 18.86 2600 0.0937 0.1332
0.2486 19.58 2700 0.0972 0.1337
0.2338 20.31 2800 0.0949 0.1322
0.2338 21.03 2900 0.0982 0.1313
0.2143 21.76 3000 0.0958 0.1311
0.2143 22.48 3100 0.0960 0.1252
0.2018 23.21 3200 0.0930 0.1251
0.2018 23.93 3300 0.0924 0.1243
0.1933 24.66 3400 0.0931 0.1225
0.1933 25.39 3500 0.0942 0.1197
0.1813 26.11 3600 0.0938 0.1208
0.1813 26.84 3700 0.0936 0.1199
0.1792 27.56 3800 0.0932 0.1184

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
17
Safetensors
Model size
315M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for andrewbawitlung/wav2vec2-xls-r-300m-mizo-lus-v25

Finetuned
(677)
this model

Space using andrewbawitlung/wav2vec2-xls-r-300m-mizo-lus-v25 1

Collection including andrewbawitlung/wav2vec2-xls-r-300m-mizo-lus-v25

Evaluation results