mbart-neutralizacion-es

This model is a fine-tuned version of facebook/mbart-large-50 on dataset somosnlp-hackathon-2022/neutral-es. It achieves the following results on the evaluation set:

  • Loss: 0.0104
  • Bleu: 99.0106
  • Gen Len: 18.6146

Model description

Model to neutralize gendered text.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 352 0.0304 97.1712 18.5729
1.6026 2.0 704 0.0121 98.6521 18.5729
0.0232 3.0 1056 0.0104 99.0106 18.6146

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
26
Safetensors
Model size
611M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for angelinesvay/mbart-neutralizacion-es

Finetuned
(198)
this model

Dataset used to train angelinesvay/mbart-neutralizacion-es