Model Card for Model ID
Model Details
Model Description
This is the model card of a ๐ค transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Aniket Maurya
- Model type: Visual language model
- License: MIT
- Finetuned from model [optional]: microsoft/Florence-2-base-ft
Uses
Use this model for extracting total amount from a receipt.
How to Get Started with the Model
Use the code below to get started with the model.
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model = AutoModelForCausalLM.from_pretrained("aniketmaurya/receipt-model-2025", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
prompt = "<VQA>Given the following receipt, extract the total amount spent."
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=100,
do_sample=False,
num_beams=3
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
print(generated_text)
Training Details
Training Data
Public receipt data comprising 216 images forked from Roboflow universe and annotated manually for total amount.
Training Procedure
Training configuration
{
'model_id': 'microsoft/Florence-2-base-ft',
'revision': 'refs/pr/20',
'epochs': 30,
'optimizer': 'adamw',
'lr': 5e-06,
'lr_scheduler': 'linear',
'batch_size': 8,
'val_batch_size': None,
'num_workers': 0,
'val_num_workers': None,
'lora_r': 8,
'lora_alpha': 8,
'lora_dropout': 0.05,
'bias': 'none',
'use_rslora': True,
'init_lora_weights': 'gaussian',
}
Preprocessing [optional]
Image augmentations:
- shear, random rotate, and noise
Evaluation
Vibe check ๐
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for aniketmaurya/receipt-model-2025
Base model
microsoft/Florence-2-base-ft